Identification of Small-Molecule Inhibitors of Yersinia pestis Type III Secretion System YscN ATPase

Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessa...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 5; p. e19716
Main Authors Swietnicki, Wieslaw, Carmany, Daniel, Retford, Michael, Guelta, Mark, Dorsey, Russell, Bozue, Joel, Lee, Michael S., Olson, Mark A.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.05.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC(50) values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: WS. Performed the experiments: WS MR DC MG MSL MAO RD JB. Wrote the paper: WS MAO. Analyzed the data for experimental work: WS. Analyzed the computational screening results: MAO MSL.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0019716