Insulin Resistance in Non-Obese Subjects Is Associated with Activation of the JNK Pathway and Impaired Insulin Signaling in Skeletal Muscle

The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms r...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 5; p. e19878
Main Authors Masharani, Umesh B., Maddux, Betty A., Li, Xiaojuan, Sakkas, Giorgos K., Mulligan, Kathleen, Schambelan, Morris, Goldfine, Ira D., Youngren, Jack F.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.05.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots. To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL) were assessed by DXA, MRI and (1)H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05), while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005) while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005). IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2)O peak, P<0.05), who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls. This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired insulin signaling in this population.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: UBM IDG JFY KM MS. Performed the experiments: UBM BAM. Analyzed the data: XL GKS UBM JFY. Contributed reagents/materials/analysis tools: GKS KM. Wrote the paper: JFY IDG UBM.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0019878