Effects of a Caffeine-Containing Energy Drink on Simulated Soccer Performance

To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake. Nineteen semiprofessional soccer players ingested 630 ± 52 mL of a comme...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 2; p. e31380
Main Authors Del Coso, Juan, Muñoz-Fernández, Víctor E., Muñoz, Gloria, Fernández-Elías, Valentín E., Ortega, Juan F., Hamouti, Nassim, Barbero, José C., Muñoz-Guerra, Jesús
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.02.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake. Nineteen semiprofessional soccer players ingested 630 ± 52 mL of a commercially available energy drink (sugar-free Red Bull®) to provide 3 mg of caffeine per kg of body mass, or a decaffeinated control drink (0 mg/kg). After sixty minutes they performed a 15-s maximal jump test, a repeated sprint test (7 × 30 m; 30 s of active recovery) and played a simulated soccer game. Individual running distance and speed during the game were measured using global positioning satellite (GPS) devices. In comparison to the control drink, the ingestion of the energy drink increased mean jump height in the jump test (34.7 ± 4.7 v 35.8 ± 5.5 cm; P<0.05), mean running speed during the sprint test (25.6 ± 2.1 v 26.3 ± 1.8 km · h(-1); P<0.05) and total distance covered at a speed higher than 13 km · h(-1) during the game (1205 ± 289 v 1436 ± 326 m; P<0.05). In addition, the energy drink increased the number of sprints during the whole game (30 ± 10 v 24 ± 8; P<0.05). Post-exercise urine caffeine concentration was higher after the energy drink than after the control drink (4.1 ± 1.0 v 0.1 ± 0.1 µg · mL(-1); P<0.05). A caffeine-containing energy drink in a dose equivalent to 3 mg/kg increased the ability to repeatedly sprint and the distance covered at high intensity during a simulated soccer game. In addition, the caffeinated energy drink increased jump height which may represent a meaningful improvement for headers or when players are competing for a ball.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: JC GM VF NH JM. Performed the experiments: JC VM VF JO NH JB. Analyzed the data: JC VM JB JM. Contributed reagents/materials/analysis tools: JB. Wrote the paper: JC VM VF JO NH JB.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0031380