Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome

22q11 Deletion Syndrome (22q11DS) is associated with dysmorphology and a high prevalence of schizophrenia-like symptoms. Several genes located on chromosome 22q11 have been linked to schizophrenia. The deletion is thought to disrupt the expression of multiple genes involved in maturation and develop...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 3; p. e33473
Main Authors van Beveren, Nico J M, Krab, Lianne C, Swagemakers, Sigrid, Buitendijk, Gabriella, Buitendijk, Gabriëlle H S, Boot, Erik, van der Spek, Peter, Elgersma, Ype, van Amelsvoort, Therese A M J
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 22.03.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:22q11 Deletion Syndrome (22q11DS) is associated with dysmorphology and a high prevalence of schizophrenia-like symptoms. Several genes located on chromosome 22q11 have been linked to schizophrenia. The deletion is thought to disrupt the expression of multiple genes involved in maturation and development of neurons and neuronal circuits, and neurotransmission. We investigated whole-genome gene expression of Peripheral Blood Mononuclear Cells (PBMC's) of 8 22q11DS patients and 8 age- and gender-matched controls, to (1) investigate the expression levels of 22q11 genes and (2) to investigate whether 22q11 genes participate in functional genetic networks relevant to schizophrenia. Functional relationships between genes differentially expressed in patients (as identified by Locally Adaptive Statistical procedure (LAP) or satisfying p<0.05 and fold-change >1.5) were investigated with the Ingenuity Pathways Analysis (IPA). 14 samples (7 patients, 7 controls) passed quality controls. LAP identified 29 deregulated genes. Pathway analysis showed 262 transcripts differentially expressed between patients and controls. Functional pathways most disturbed were cell death, cell morphology, cellular assembly and organization, and cell-to-cell signaling. In addition, 10 canonical pathways were identified, among which the signal pathways for Natural Killer-cells, neurotrophin/Trk, neuregulin, axonal guidance, and Huntington's disease. Our findings support the use of 22q11DS as a research model for schizophrenia. We identified decreased expression of several genes (among which COMT, Ufd1L, PCQAP, and GNB1L) previously linked to schizophrenia as well as involvement of signaling pathways relevant to schizophrenia, of which Neurotrophin/Trk and neuregulin signaling seems to be especially notable.
Bibliography:Conceived and designed the experiments: NJMvB. Performed the experiments: LCK SS YE. Analyzed the data: PvdS GB. Contributed reagents/materials/analysis tools: LCK SS YE TvA EB. Wrote the paper: NJMvB TvA EB.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0033473