Leukocyte ADAM17 regulates acute pulmonary inflammation

The transmembrane protease ADAM17 regulates the release and density of various leukocyte cell surface proteins that modulate inflammation, including L-selectin, TNF-α, and IL-6R. At this time, its in vivo substrates and role in pulmonary inflammation have not been directly examined. Using conditiona...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 5; p. e19938
Main Authors Arndt, Patrick G, Strahan, Brian, Wang, Yue, Long, Chunmei, Horiuchi, Keisuke, Walcheck, Bruce
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.05.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The transmembrane protease ADAM17 regulates the release and density of various leukocyte cell surface proteins that modulate inflammation, including L-selectin, TNF-α, and IL-6R. At this time, its in vivo substrates and role in pulmonary inflammation have not been directly examined. Using conditional ADAM17 knock-out mice, we investigated leukocyte ADAM17 in acute lung inflammation. Alveolar TNF-α levels were significantly reduced (>95%) in ADAM17-null mice following LPS administration, as was the shedding of L-selectin, a neutrophil-expressed adhesion molecule. Alveolar IL-6R levels, however, were reduced by only ≈25% in ADAM17-null mice, indicating that ADAM17 is not its primary sheddase in our model. Neutrophil infiltration into the alveolar compartment is a key event in the pathophysiology of acute airway inflammation. Following LPS inhalation, alveolar neutrophil levels and lung inflammation in ADAM17-null mice were overall reduced when compared to control mice. Interestingly, however, neutrophil recruitment to the alveolar compartment occurred earlier in ADAM17-null mice after exposure to LPS. This decrease in alveolar neutrophil recruitment in ADAM17-null mice was accompanied by significantly diminished alveolar levels of the neutrophil-tropic chemokines CXCL1 and CXCL5. Altogether, our study suggests that leukocyte ADAM17 promotes inflammation in the lung, and thus this sheddase may be a potential target in the design of pharmacologic therapies for acute lung injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: BW PGA. Performed the experiments: BW PGA BS YW CL. Analyzed the data: BW PGA BS YW. Contributed reagents/materials/analysis tools: KH CL. Wrote the paper: BW PGA.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0019938