Leukocyte ADAM17 regulates acute pulmonary inflammation
The transmembrane protease ADAM17 regulates the release and density of various leukocyte cell surface proteins that modulate inflammation, including L-selectin, TNF-α, and IL-6R. At this time, its in vivo substrates and role in pulmonary inflammation have not been directly examined. Using conditiona...
Saved in:
Published in | PloS one Vol. 6; no. 5; p. e19938 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
16.05.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The transmembrane protease ADAM17 regulates the release and density of various leukocyte cell surface proteins that modulate inflammation, including L-selectin, TNF-α, and IL-6R. At this time, its in vivo substrates and role in pulmonary inflammation have not been directly examined. Using conditional ADAM17 knock-out mice, we investigated leukocyte ADAM17 in acute lung inflammation. Alveolar TNF-α levels were significantly reduced (>95%) in ADAM17-null mice following LPS administration, as was the shedding of L-selectin, a neutrophil-expressed adhesion molecule. Alveolar IL-6R levels, however, were reduced by only ≈25% in ADAM17-null mice, indicating that ADAM17 is not its primary sheddase in our model. Neutrophil infiltration into the alveolar compartment is a key event in the pathophysiology of acute airway inflammation. Following LPS inhalation, alveolar neutrophil levels and lung inflammation in ADAM17-null mice were overall reduced when compared to control mice. Interestingly, however, neutrophil recruitment to the alveolar compartment occurred earlier in ADAM17-null mice after exposure to LPS. This decrease in alveolar neutrophil recruitment in ADAM17-null mice was accompanied by significantly diminished alveolar levels of the neutrophil-tropic chemokines CXCL1 and CXCL5. Altogether, our study suggests that leukocyte ADAM17 promotes inflammation in the lung, and thus this sheddase may be a potential target in the design of pharmacologic therapies for acute lung injury. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: BW PGA. Performed the experiments: BW PGA BS YW CL. Analyzed the data: BW PGA BS YW. Contributed reagents/materials/analysis tools: KH CL. Wrote the paper: BW PGA. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0019938 |