Joint kinematics from functional adaptation: A validation on the tibio-talar articulation

Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 48; no. 12; pp. 2960 - 2967
Main Authors Conconi, Michele, Leardini, Alberto, Parenti-Castelli, Vincenzo
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 18.09.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2015.07.042

Cover

Loading…
Abstract Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.
AbstractList Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.
Abstract Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.
Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07 degree and 2.29mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.
Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.
Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.
Author Conconi, Michele
Parenti-Castelli, Vincenzo
Leardini, Alberto
Author_xml – sequence: 1
  givenname: Michele
  surname: Conconi
  fullname: Conconi, Michele
  email: michele.conconi@unibo.it
  organization: Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR) Alma Mater Studiorum – University of Bologna, Italy
– sequence: 2
  givenname: Alberto
  surname: Leardini
  fullname: Leardini, Alberto
  organization: Movement Analysis Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy
– sequence: 3
  givenname: Vincenzo
  surname: Parenti-Castelli
  fullname: Parenti-Castelli, Vincenzo
  organization: Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR) Alma Mater Studiorum – University of Bologna, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26300403$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhkVJaTZp_0Iw9NKLnZFkS3YppSG0aUugh7aHnoQsjYkcf2wlOZB_X3udtLCHbkAwDHrmZWbeOSFHwzggIWcUMgpUnLdZW7uxR3OTMaBFBjKDnD0jG1pKnjJewhHZADCaVqyCY3ISQgsAMpfVC3LMBAfIgW_Ir6-jG2Jy6wbsdXQmJI0f-6SZBhPdOOgu0VZvo16St8lFcqc7Z3dZMr94g0l0cyNp1J32ifazxNTt_l-S543uAr56iKfk56ePPy4_p9ffrr5cXlynRlQQU6YppbrQVnBdWWGYaIqmMNyiAIk1clEJELbQnCPS2moUhaBiDk1uRc34KXmz6m79-HvCEFXvgsGu0wOOU1C05JLnIKU8jEpZAhNF_gRVScsKJOOL6us9tB0nP69upSitSiFm6uyBmuoerdp612t_rx6tmAGxAsaPIXhs_iIU1OK5atWj52rxXIFUsGv13V6hcath0WvXHS7_sJbjbNKdQ6-CcTgYtM6jicqO7rDE-z0J07nBGd3d4j2Gf-tQgSlQ35e7XM6SFvPovCz_L_CUDv4AcI_1Dg
CitedBy_id crossref_primary_10_1016_j_jbiomech_2017_04_029
crossref_primary_10_1115_1_4043028
crossref_primary_10_3390_lubricants7020015
crossref_primary_10_1016_j_fcl_2023_01_001
crossref_primary_10_1016_j_jbiomech_2020_110186
crossref_primary_10_1016_j_gaitpost_2020_06_022
crossref_primary_10_1080_21681163_2018_1473169
crossref_primary_10_2351_7_0000459
crossref_primary_10_1016_j_gaitpost_2016_07_030
crossref_primary_10_3390_app11188348
crossref_primary_10_1109_TBME_2020_3018113
crossref_primary_10_1002_ajpa_24826
crossref_primary_10_1016_j_jbiomech_2018_11_016
Cites_doi 10.1016/j.jbiomech.2008.05.037
10.1359/jbmr.2002.17.8.1545
10.1016/j.jbiomech.2004.08.017
10.1016/j.jbiomech.2004.06.019
10.1007/s11517-014-1137-y
10.1016/S0021-9290(98)00157-2
10.1002/ar.1092260403
10.1016/S0268-0033(99)00015-7
10.1016/j.mechrescom.2008.10.004
10.1097/01.blo.0000144970.05107.7e
10.1359/jbmr.1997.12.10.1737
10.1007/BF01879806
10.1115/1.1933949
10.1016/S0268-0033(98)00011-4
10.1111/j.1749-6632.2011.06301.x
10.1002/ar.1092260402
10.1098/rsta.2010.0073
10.1115/1.1289639
10.1111/j.1469-7998.1980.tb04243.x
10.1016/S0021-9290(07)70140-9
10.1002/(SICI)1520-6300(1999)11:4<437::AID-AJHB4>3.0.CO;2-K
10.1002/jor.1100170408
10.3109/03008207909152351
10.1055/s-2007-1021056
10.1016/0021-9290(87)90030-3
10.1002/art.1780230310
10.1111/j.0954-6820.1986.tb08945.x
10.1038/35015116
10.1097/00003086-199312000-00042
10.1016/j.jbmt.2008.04.038
10.2106/00004623-197759010-00004
10.1002/art.10462
10.1016/0012-1606(66)90022-4
10.1002/ar.1092260405
10.1016/j.mechmachtheory.2011.07.006
10.1016/S0021-9290(97)00120-6
10.1243/0954411041932791
10.1016/S0022-5193(88)80122-X
10.1002/jor.1100110413
10.1111/j.1469-7580.2006.00546.x
10.1016/S0268-0033(98)00091-6
10.1016/0021-9290(87)90026-1
10.1002/ar.a.20345
10.1159/000146418
10.1016/S0021-9290(98)00119-5
10.1115/1.3138397
10.1016/j.jbiomech.2009.04.024
10.1016/0021-9290(87)90027-3
10.1016/0021-9290(84)90003-4
10.1159/000146045
10.2746/0425164054223769
10.1046/j.1469-7580.1998.19340481.x
10.1080/03008200902846270
10.1002/ar.a.10001
10.1002/ar.1092260404
10.1109/IEMBS.1995.579667
10.1115/DETC2011-48244
10.1016/j.mehy.2010.02.021
10.1148/radiol.2341040041
10.1002/jor.1100130320
10.1097/00003086-198105000-00008
10.1096/fasebj.13.9001.s101
10.4028/www.scientific.net/AMM.162.266
10.1115/1.3426257
10.1359/jbmr.2001.16.5.918
10.1146/annurev.bioeng.8.061505.095721
10.1016/S0268-0033(99)00077-7
10.1136/ard.58.1.27
10.1016/S0021-9290(02)00276-2
10.1097/00003086-198105000-00007
10.1016/j.gaitpost.2004.05.002
10.1002/jor.1100100111
10.1016/0021-9290(95)00163-8
10.1002/art.23024
10.1177/00220345660450030801
10.3109/17453677808993232
10.1016/0021-9290(85)90204-0
10.1016/j.bone.2007.10.009
10.3109/17453678208992224
10.1002/jor.1100150416
10.1016/j.jbmt.2008.02.001
10.1146/annurev.bioeng.2.1.691
10.1177/0954411914550848
10.1177/0954411911406951
10.1016/S8756-3282(03)00083-8
10.1359/jbmr.1997.12.4.580
10.1002/jor.1100110109
10.1016/S0966-6362(96)01080-6
10.1002/jor.1100060604
10.1115/1.2798002
10.1136/ard.56.4.255
10.1007/BF01879454
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2015
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
P64
DOI 10.1016/j.jbiomech.2015.07.042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Research Library Prep



Engineering Research Database
MEDLINE
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 2967
ExternalDocumentID 3823393201
26300403
10_1016_j_jbiomech_2015_07_042
S0021929015004388
1_s2_0_S0021929015004388
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
P64
ID FETCH-LOGICAL-c690t-2a111a5ad63a9d6c26f5f5c3de607ebe369606d5a33ee1bdae65616ae6f4d6b23
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Sep 05 13:15:26 EDT 2025
Fri Sep 05 03:13:59 EDT 2025
Thu Sep 04 18:33:24 EDT 2025
Wed Aug 13 08:07:23 EDT 2025
Mon Jul 21 06:04:43 EDT 2025
Thu Jul 03 08:32:29 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Fri Feb 23 02:20:32 EST 2024
Sun Feb 23 10:20:47 EST 2025
Tue Aug 26 17:10:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Joint kinmatics
Subject-specific modeling
Joint congruence
Functional adaptation
Human ankle
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c690t-2a111a5ad63a9d6c26f5f5c3de607ebe369606d5a33ee1bdae65616ae6f4d6b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/11585/580526
PMID 26300403
PQID 1718119866
PQPubID 1226346
PageCount 8
ParticipantIDs proquest_miscellaneous_1837340777
proquest_miscellaneous_1778026542
proquest_miscellaneous_1718907237
proquest_journals_1718119866
pubmed_primary_26300403
crossref_primary_10_1016_j_jbiomech_2015_07_042
crossref_citationtrail_10_1016_j_jbiomech_2015_07_042
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2015_07_042
elsevier_clinicalkeyesjournals_1_s2_0_S0021929015004388
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2015_07_042
PublicationCentury 2000
PublicationDate 2015-09-18
PublicationDateYYYYMMDD 2015-09-18
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Frost (bib36) 1999; 11
Fregly, Rahman, Banks (bib31) 2005; 127
Jang, Kim (bib50) 2008; 41
Wilson, O'Connor (bib109) 1997; 5
Roux, W., 1881. Der Zuchtende Kampf der Teile, oder die “Teilauslese” im Organismus (“Theorie der Funktionellen Anpassung”).
Dekel, Weissman (bib24) 1978; 49
Huiskes, Weinans (bib47) 1987; 20
Sancisi, Parenti-Castelli (bib86) 2011; 46
Hsieh, Turner (bib44) 2001; 16
Palmoski, Colyer, Brandt (bib72) 1980; 23
Amiel, Woo (bib2) 1982; 53
Schriefer, Warden (bib91) 2005; 38
Huiskes, Ruimerman (bib48) 2000; 405
Chen, McCabe (bib17) 2000; 122
Wolff (bib111) 1986
Solomonow (bib116) 2009; 13
Feikes, O'Connor, Zavatsky (bib28) 2003; 36
Frost (bib35) 1990; 226
Jortikka, Inkinen (bib51) 1997; 56
Johnson (bib115) 1985
Burr, Martin (bib13) 1985; 18
Ingber (bib49) 2008; 12
Kaneko, Sasazaki (bib54) 2009; 50
Corazza, Stagni (bib23) 2005; 38
Wilson, Feikes, O'Connor (bib110) 1998; 31
Scherrer, Hillberry, Sickle (bib90) 1979; 101
Mosher, Smith (bib68) 2005; 234
Benjamin, Ralphs (bib6) 1998; 193
Burger, Klein-Nulend (bib12) 1999; 13
Eckstein, Hudelmaier, Putz (bib27) 2006; 208
Lanyon (bib58) 1987; 20
Leardini, O'Connor (bib60) 1999; 32
Shepherd, Seedhom (bib93) 1999; 58
Lanyon (bib57) 1980; 192
Wren, Beaupre, Carter (bib113) 1998; 31
Walsh, Frank (bib107) 1993; 297
Heegaard, Beaupre, Carter (bib43) 1999; 17
Perie, Hobatho (bib75) 1998; 13
Kura, Kitaoka (bib56) 1998; 13
Ronsky, J., Van den Bogert, A. et al., 1997. Application of magnetic resonance imaging for non-invasive quantification of joint contact surface areas. In: Proceedings of the IEEE 17th Annual Conference. Engineering in Medicine and Biology Society,1995, vol. 2, pp. 1253–1254.
Carter, Beaupre (bib16) 2004; 427
Robling, Hinant (bib80) 2002; 17
Ramsey, Wretenberg (bib78) 1999; 14
Frost (bib32) 1990; 226
Franci, Parenti-Castelli, Belvedere, Leardini (bib29) 2009; 42
Judex, Gross, Zernicke (bib52) 1997; 12
Ottoboni, Sancisi (bib71) 2007; 40
Bullough (bib11) 1981; 156
Steinberg, Trueta (bib98) 1981; 156
Conconi, Parenti-Castelli (bib18) 2012; 162
van Oers, Ruimerman (bib103) 2008; 42
Frost (bib33) 1990; 226
Plochocki, Riscigno, Garcia (bib76) 2006; 288
Smith, Thomas (bib95) 1992; 10
Pauwels (bib74) 1980
Volkmann (bib106) 1862; 24
Sancisi, Zannoli (bib87) 2011; 225
Conconi, Parenti-Castelli (bib19) 2014; 228
Hueter (bib46) 1862; 25
Tipton, Vailas, Matthes (bib99) 1986; 711
Vogel, Ordog (bib105) 1993; 11
Leardini, Chiari (bib61) 2005; 21
Radin, Ehrlich (bib77) 1978; 131
Setton, Tohyama, Mow (bib92) 1998; 120
Conconi, M., Parenti-Castelli, V., 2012b. Sensitivity and stability analysis of a kinematic model for human joints (an application to human ankle). In: Proceedings of the XII International Symposium on 3D Analysis of Human Movement. Bologna, Italy, pp. 1–4.
Frost (bib34) 1990; 226
Loitz, Zernicke (bib65) 1989
Turner, Owan, Takano (bib101) 1995; 269
Grodzinsky, Levenston (bib40) 2000; 2
Sancisi, N., Zannoli, D., Parenti Castelli, V., 2011a. A procedure to analyze and compare the sensitivity to geometrical parameter variations of one-dof mechanisms
Bertram, Biewener (bib7) 1988; 131
Blackwood (bib8) 1966; 43
In: Proceedings of the ASME-IDETC/CIE, pp. 1–9.
Wren, Beaupre, Carter (bib114) 2000; 37
Sirkett, Mullineux (bib94) 2004; 218
Fujie, Yamamoto (bib37) 2000; 15
Wong, Carter (bib112) 2003; 33
Gillard, Reilly (bib38) 1979; 7
Robling, Castillo, Turner (bib81) 2006; 8
Sancisi, Baldisserri, Parenti-Castelli, Belvedere, Leardini (bib88) 2014; 52
Leong, Hardin (bib63) 2011; 1240
Ateshian, Ark (bib5) 1995; 13
Brommer, Brama (bib10) 2005; 37
Adachi, Kameo, Hojo (bib1) 2010; 368
Giori, Beaupre, Carter (bib39) 1993; 11
Lanyon, Rubin (bib59) 1984; 17
Ruano-Gil, Nardi-Vilardaga, Teixidor-Johe (bib84) 1985; 123
Smith, Martin (bib96) 1997; 15
Paukkonen, Helminen (bib73) 1984; 35
Riggs, Lanyon, Boyde (bib79) 1993; 187
Carter (bib14) 1987; 20
Sokoloff (bib97) 1969
Neu, Khalafi (bib69) 2007; 56
Letechipia, Alessi (bib64) 2010; 75
Bouvier, Zimny (bib9) 1987; 129
McMaster, Weinert (bib67) 1970; 72
Hayashi (bib42) 1996; 29
Cooney, Chao (bib22) 1977; 59
Carter, Wong (bib15) 1988; 6
Ward, Pitsillidcs (bib108) 1998; 40
Franci, R., Parenti-Castelli,V., 2008. A one-degree-of-freedom spherical wrist for the modelling of passive motion of the human ankle joint. In: Proceedings of IAK 2008, Conference on Interdisciplinary Applications of Kinematics. Lima, Peru, pp. 1–13.
Drachman, Sokoloff (bib25) 1966; 14
Grood, Suntay (bib41) 1983; 135
Vahdati, Rouhi (bib102) 2009; 36
O'Connor (bib70) 1997; 12
Hudelmaier, Glaser (bib45) 2003; 270
Vanwanseele, Eckstein (bib104) 2002; 46
Arokoski, Jurvelin (bib3) 1994; 15
Pauwels (10.1016/j.jbiomech.2015.07.042_bib74) 1980
van Oers (10.1016/j.jbiomech.2015.07.042_bib103) 2008; 42
Radin (10.1016/j.jbiomech.2015.07.042_bib77) 1978; 131
Solomonow (10.1016/j.jbiomech.2015.07.042_bib116) 2009; 13
Drachman (10.1016/j.jbiomech.2015.07.042_bib25) 1966; 14
Smith (10.1016/j.jbiomech.2015.07.042_bib96) 1997; 15
Lanyon (10.1016/j.jbiomech.2015.07.042_bib59) 1984; 17
Vanwanseele (10.1016/j.jbiomech.2015.07.042_bib104) 2002; 46
Carter (10.1016/j.jbiomech.2015.07.042_bib15) 1988; 6
Carter (10.1016/j.jbiomech.2015.07.042_bib14) 1987; 20
Carter (10.1016/j.jbiomech.2015.07.042_bib16) 2004; 427
Wolff (10.1016/j.jbiomech.2015.07.042_bib111) 1986
Neu (10.1016/j.jbiomech.2015.07.042_bib69) 2007; 56
Wilson (10.1016/j.jbiomech.2015.07.042_bib110) 1998; 31
Frost (10.1016/j.jbiomech.2015.07.042_bib35) 1990; 226
Smith (10.1016/j.jbiomech.2015.07.042_bib95) 1992; 10
Giori (10.1016/j.jbiomech.2015.07.042_bib39) 1993; 11
Leong (10.1016/j.jbiomech.2015.07.042_bib63) 2011; 1240
Mosher (10.1016/j.jbiomech.2015.07.042_bib68) 2005; 234
Hsieh (10.1016/j.jbiomech.2015.07.042_bib44) 2001; 16
Ottoboni (10.1016/j.jbiomech.2015.07.042_bib71) 2007; 40
Arokoski (10.1016/j.jbiomech.2015.07.042_bib3) 1994; 15
Frost (10.1016/j.jbiomech.2015.07.042_bib34) 1990; 226
Grood (10.1016/j.jbiomech.2015.07.042_bib41) 1983; 135
Steinberg (10.1016/j.jbiomech.2015.07.042_bib98) 1981; 156
Bullough (10.1016/j.jbiomech.2015.07.042_bib11) 1981; 156
Turner (10.1016/j.jbiomech.2015.07.042_bib101) 1995; 269
Riggs (10.1016/j.jbiomech.2015.07.042_bib79) 1993; 187
Leardini (10.1016/j.jbiomech.2015.07.042_bib60) 1999; 32
Scherrer (10.1016/j.jbiomech.2015.07.042_bib90) 1979; 101
Leardini (10.1016/j.jbiomech.2015.07.042_bib61) 2005; 21
Robling (10.1016/j.jbiomech.2015.07.042_bib80) 2002; 17
Huiskes (10.1016/j.jbiomech.2015.07.042_bib47) 1987; 20
Bouvier (10.1016/j.jbiomech.2015.07.042_bib9) 1987; 129
Cooney (10.1016/j.jbiomech.2015.07.042_bib22) 1977; 59
Loitz (10.1016/j.jbiomech.2015.07.042_bib65) 1989
Ruano-Gil (10.1016/j.jbiomech.2015.07.042_bib84) 1985; 123
Wren (10.1016/j.jbiomech.2015.07.042_bib113) 1998; 31
Dekel (10.1016/j.jbiomech.2015.07.042_bib24) 1978; 49
O'Connor (10.1016/j.jbiomech.2015.07.042_bib70) 1997; 12
Ingber (10.1016/j.jbiomech.2015.07.042_bib49) 2008; 12
Ateshian (10.1016/j.jbiomech.2015.07.042_bib5) 1995; 13
Gillard (10.1016/j.jbiomech.2015.07.042_bib38) 1979; 7
Schriefer (10.1016/j.jbiomech.2015.07.042_bib91) 2005; 38
Huiskes (10.1016/j.jbiomech.2015.07.042_bib48) 2000; 405
Frost (10.1016/j.jbiomech.2015.07.042_bib36) 1999; 11
Conconi (10.1016/j.jbiomech.2015.07.042_bib19) 2014; 228
Fregly (10.1016/j.jbiomech.2015.07.042_bib31) 2005; 127
Hudelmaier (10.1016/j.jbiomech.2015.07.042_bib45) 2003; 270
Robling (10.1016/j.jbiomech.2015.07.042_bib81) 2006; 8
Eckstein (10.1016/j.jbiomech.2015.07.042_bib27) 2006; 208
Judex (10.1016/j.jbiomech.2015.07.042_bib52) 1997; 12
Ramsey (10.1016/j.jbiomech.2015.07.042_bib78) 1999; 14
Conconi (10.1016/j.jbiomech.2015.07.042_bib18) 2012; 162
Hayashi (10.1016/j.jbiomech.2015.07.042_bib42) 1996; 29
Frost (10.1016/j.jbiomech.2015.07.042_bib33) 1990; 226
Lanyon (10.1016/j.jbiomech.2015.07.042_bib58) 1987; 20
Kura (10.1016/j.jbiomech.2015.07.042_bib56) 1998; 13
Vahdati (10.1016/j.jbiomech.2015.07.042_bib102) 2009; 36
10.1016/j.jbiomech.2015.07.042_bib20
Feikes (10.1016/j.jbiomech.2015.07.042_bib28) 2003; 36
Setton (10.1016/j.jbiomech.2015.07.042_bib92) 1998; 120
Benjamin (10.1016/j.jbiomech.2015.07.042_bib6) 1998; 193
Jortikka (10.1016/j.jbiomech.2015.07.042_bib51) 1997; 56
Jang (10.1016/j.jbiomech.2015.07.042_bib50) 2008; 41
McMaster (10.1016/j.jbiomech.2015.07.042_bib67) 1970; 72
Letechipia (10.1016/j.jbiomech.2015.07.042_bib64) 2010; 75
Fujie (10.1016/j.jbiomech.2015.07.042_bib37) 2000; 15
Sancisi (10.1016/j.jbiomech.2015.07.042_bib87) 2011; 225
Adachi (10.1016/j.jbiomech.2015.07.042_bib1) 2010; 368
10.1016/j.jbiomech.2015.07.042_bib30
Tipton (10.1016/j.jbiomech.2015.07.042_bib99) 1986; 711
Grodzinsky (10.1016/j.jbiomech.2015.07.042_bib40) 2000; 2
Hueter (10.1016/j.jbiomech.2015.07.042_bib46) 1862; 25
Lanyon (10.1016/j.jbiomech.2015.07.042_bib57) 1980; 192
Bertram (10.1016/j.jbiomech.2015.07.042_bib7) 1988; 131
10.1016/j.jbiomech.2015.07.042_bib82
10.1016/j.jbiomech.2015.07.042_bib83
Sancisi (10.1016/j.jbiomech.2015.07.042_bib86) 2011; 46
Kaneko (10.1016/j.jbiomech.2015.07.042_bib54) 2009; 50
Johnson (10.1016/j.jbiomech.2015.07.042_bib115) 1985
10.1016/j.jbiomech.2015.07.042_bib89
Volkmann (10.1016/j.jbiomech.2015.07.042_bib106) 1862; 24
Wong (10.1016/j.jbiomech.2015.07.042_bib112) 2003; 33
Paukkonen (10.1016/j.jbiomech.2015.07.042_bib73) 1984; 35
Perie (10.1016/j.jbiomech.2015.07.042_bib75) 1998; 13
Frost (10.1016/j.jbiomech.2015.07.042_bib32) 1990; 226
Sirkett (10.1016/j.jbiomech.2015.07.042_bib94) 2004; 218
Palmoski (10.1016/j.jbiomech.2015.07.042_bib72) 1980; 23
Chen (10.1016/j.jbiomech.2015.07.042_bib17) 2000; 122
Shepherd (10.1016/j.jbiomech.2015.07.042_bib93) 1999; 58
Wilson (10.1016/j.jbiomech.2015.07.042_bib109) 1997; 5
Burr (10.1016/j.jbiomech.2015.07.042_bib13) 1985; 18
Plochocki (10.1016/j.jbiomech.2015.07.042_bib76) 2006; 288
Brommer (10.1016/j.jbiomech.2015.07.042_bib10) 2005; 37
Vogel (10.1016/j.jbiomech.2015.07.042_bib105) 1993; 11
Amiel (10.1016/j.jbiomech.2015.07.042_bib2) 1982; 53
Corazza (10.1016/j.jbiomech.2015.07.042_bib23) 2005; 38
Walsh (10.1016/j.jbiomech.2015.07.042_bib107) 1993; 297
Heegaard (10.1016/j.jbiomech.2015.07.042_bib43) 1999; 17
Blackwood (10.1016/j.jbiomech.2015.07.042_bib8) 1966; 43
Burger (10.1016/j.jbiomech.2015.07.042_bib12) 1999; 13
Ward (10.1016/j.jbiomech.2015.07.042_bib108) 1998; 40
Wren (10.1016/j.jbiomech.2015.07.042_bib114) 2000; 37
Sancisi (10.1016/j.jbiomech.2015.07.042_bib88) 2014; 52
Franci (10.1016/j.jbiomech.2015.07.042_bib29) 2009; 42
Sokoloff (10.1016/j.jbiomech.2015.07.042_bib97) 1969
References_xml – volume: 40
  start-page: 199
  year: 1998
  ident: bib108
  article-title: Developmental immobilization induces failure of joint cavity formation by a process involving selective local changes in glycosaminoglycan synthesis
  publication-title: Trans. Orthop. Res. Soc.
– volume: 14
  start-page: 401
  year: 1966
  end-page: 420
  ident: bib25
  article-title: The role of movement in embryonic joint development
  publication-title: Dev. Biol.
– reference: Franci, R., Parenti-Castelli,V., 2008. A one-degree-of-freedom spherical wrist for the modelling of passive motion of the human ankle joint. In: Proceedings of IAK 2008, Conference on Interdisciplinary Applications of Kinematics. Lima, Peru, pp. 1–13.
– volume: 25
  start-page: 572
  year: 1862
  end-page: 599
  ident: bib46
  article-title: Anatomische studien an den extremititengclenken neugeborener und erwachsener
  publication-title: Virchows Arch. A Pathol. Anat. Histopathol.
– volume: 20
  start-page: 1135
  year: 1987
  end-page: 1150
  ident: bib47
  article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis
  publication-title: J. Biomech.
– volume: 12
  start-page: 198
  year: 2008
  end-page: 200
  ident: bib49
  article-title: Tensegrity and mechanotransduction
  publication-title: J. Bodyw. Mov. Ther.
– volume: 12
  start-page: 1737
  year: 1997
  end-page: 1745
  ident: bib52
  article-title: Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton
  publication-title: J. Bone Miner. Res.
– volume: 8
  start-page: 455
  year: 2006
  end-page: 498
  ident: bib81
  article-title: Biomechanical and molecular regulation of bone remodeling
  publication-title: Annum Revm Biomedm Eng.
– volume: 38
  start-page: 1838
  year: 2005
  end-page: 1845
  ident: bib91
  article-title: Cellular accommodation and the response of bone to mechanical loading
  publication-title: J. Biomech.
– year: 1986
  ident: bib111
  article-title: The Law of Bone Remodelling
– volume: 208
  start-page: 491
  year: 2006
  end-page: 512
  ident: bib27
  article-title: The effects of exercise on human articular cartilage
  publication-title: J. Anat.
– reference: Ronsky, J., Van den Bogert, A. et al., 1997. Application of magnetic resonance imaging for non-invasive quantification of joint contact surface areas. In: Proceedings of the IEEE 17th Annual Conference. Engineering in Medicine and Biology Society,1995, vol. 2, pp. 1253–1254.
– volume: 24
  start-page: 512
  year: 1862
  end-page: 540
  ident: bib106
  article-title: Chirurgische erfahrungen uber knochenverbiegungen und knochenwachsthum
  publication-title: Virchows Arch. A Pathol. Anat. Histopathol.
– volume: 17
  start-page: 897
  year: 1984
  end-page: 905
  ident: bib59
  article-title: Static vs dynamic loads as an influence on bone remodelling
  publication-title: J. Biomech.
– volume: 15
  start-page: 593
  year: 1997
  end-page: 600
  ident: bib96
  article-title: Surface remodeling of trabecular bone using a tissue level model
  publication-title: J. Orthop. Res.
– volume: 11
  start-page: 581
  year: 1993
  end-page: 591
  ident: bib39
  article-title: Cellular shape and pressure may mediate mechanical control of tissue composition in tendons
  publication-title: J. Orthop. Res.
– volume: 193
  start-page: 481
  year: 1998
  end-page: 494
  ident: bib6
  article-title: Fibrocartilage in tendons and ligaments – an adaptation to compressive load
  publication-title: J. Anat.
– volume: 6
  start-page: 804
  year: 1988
  end-page: 816
  ident: bib15
  article-title: The role of mechanical loading histories in the development of diarthrodial joints
  publication-title: J. Orthop. Res.
– volume: 16
  start-page: 918
  year: 2001
  end-page: 924
  ident: bib44
  article-title: Effects of loading frequency on mechanically induced bone formation
  publication-title: J. Bone Miner. Res.
– volume: 29
  start-page: 707
  year: 1996
  end-page: 716
  ident: bib42
  article-title: Biomechanical studies of the remodeling of knee joint tendons and ligaments
  publication-title: J. Biomech.
– volume: 41
  start-page: 2353
  year: 2008
  end-page: 2361
  ident: bib50
  article-title: Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization
  publication-title: J. Biomech.
– volume: 218
  start-page: 349
  year: 2004
  end-page: 359
  ident: bib94
  article-title: A kinematic model of the wrist based on maximization of joint contact area
  publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med.
– volume: 42
  start-page: 250
  year: 2008
  end-page: 259
  ident: bib103
  article-title: A unified theory for osteonal and hemi-osteonal remodeling
  publication-title: Bone
– volume: 120
  start-page: 355
  year: 1998
  end-page: 361
  ident: bib92
  article-title: Swelling and curling behaviors of articular cartilage
  publication-title: J. Biomech. Eng.
– volume: 56
  start-page: 3706
  year: 2007
  end-page: 3714
  ident: bib69
  article-title: Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling
  publication-title: Arthritis Rheum.
– reference: In: Proceedings of the ASME-IDETC/CIE, pp. 1–9.
– volume: 427
  start-page: 69
  year: 2004
  end-page: 77
  ident: bib16
  article-title: The mechanobiology of articular cartilage development and degeneration
  publication-title: Clin. Orthop. Relat. Res.
– year: 1980
  ident: bib74
  article-title: Biomechanics of the Locomotor Apparatus
– volume: 13
  start-page: 136
  year: 2009
  end-page: 154
  ident: bib116
  article-title: Ligaments: a source of musculoskeletal disorders
  publication-title: J. Bodyw. Mov. Ther.
– volume: 123
  start-page: 90
  year: 1985
  end-page: 92
  ident: bib84
  article-title: Embryonal hypermobility and articular development
  publication-title: Acta Anat.
– volume: 36
  start-page: 125
  year: 2003
  end-page: 129
  ident: bib28
  article-title: A constraint-based approach to modelling the mobility of the human knee joint
  publication-title: J. Biomech.
– volume: 187
  start-page: 231
  year: 1993
  end-page: 238
  ident: bib79
  article-title: Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius
  publication-title: Anat. Embryol.
– volume: 11
  start-page: 68
  year: 1993
  end-page: 77
  ident: bib105
  article-title: Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments
  publication-title: J. Orthop. Res.
– volume: 156
  start-page: 61
  year: 1981
  end-page: 66
  ident: bib11
  article-title: The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis
  publication-title: Clin. Orthop. Relat. Res.
– volume: 12
  start-page: 580
  year: 1997
  end-page: 589
  ident: bib70
  article-title: Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats
  publication-title: J. Bone Miner. Res.
– year: 1969
  ident: bib97
  article-title: The Biology of Degenerative Joint Disease
– volume: 35
  start-page: 293
  year: 1984
  end-page: 304
  ident: bib73
  article-title: Quantitative morphological and biochemical investigations on the effects of physical exercise and immobilization on the articular cartilage of young rabbits
  publication-title: Acta. Biol. Hung.
– volume: 135
  start-page: 136
  year: 1983
  end-page: 144
  ident: bib41
  article-title: A joint coordinate systenf for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
– volume: 31
  start-page: 107
  year: 1998
  end-page: 114
  ident: bib113
  article-title: A model for loading-dependent growth, development, and adaptation of tendons and ligaments
  publication-title: J. Biomech.
– volume: 59
  start-page: 27
  year: 1977
  end-page: 36
  ident: bib22
  article-title: Biomechanical analysis of static forces in the thumb during hand function
  publication-title: J. Bone Jt. Surg. Am.
– volume: 288
  start-page: 776
  year: 2006
  end-page: 781
  ident: bib76
  article-title: Functional adaptation of the femoral head to voluntary exercise
  publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
– volume: 122
  start-page: 465
  year: 2000
  end-page: 470
  ident: bib17
  article-title: Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and pH dependent
  publication-title: J. Biomech. Eng.
– volume: 270
  start-page: 175
  year: 2003
  end-page: 184
  ident: bib45
  article-title: Correlation of knee-joint cartilage morphology with muscle cross-sectional areas vs. anthropometric variables
  publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
– volume: 36
  start-page: 284
  year: 2009
  end-page: 293
  ident: bib102
  article-title: A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse
  publication-title: Mech. Res. Commun.
– volume: 37
  start-page: 217
  year: 2000
  end-page: 224
  ident: bib114
  article-title: Tendon and ligament adaptation to exercise, immobilization, and remobilization
  publication-title: J. Rehabil. Res. Dev.
– volume: 17
  start-page: 509
  year: 1999
  end-page: 517
  ident: bib43
  article-title: Mechanically modulated cartilage growth may regulate joint surface morphogenesis
  publication-title: J. Orthop. Res.
– volume: 269
  start-page: E438
  year: 1995
  end-page: E442
  ident: bib101
  article-title: Mechanotransduction in bone: role of strain rate
  publication-title: Am. J. Physiol.
– volume: 297
  start-page: 253
  year: 1993
  end-page: 261
  ident: bib107
  article-title: Knee immobilization inhibits biomechanical maturation of the rabbit medial collateral ligament
  publication-title: Clin. Orthop. Relat. Res.
– volume: 234
  start-page: 245
  year: 2005
  end-page: 249
  ident: bib68
  article-title: Change in knee cartilage T2 at MR imaging after running: a feasibility study
  publication-title: Radiology
– volume: 226
  start-page: 403
  year: 1990
  end-page: 413
  ident: bib32
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 1. redefining Wolff's law: the bone modeling problem
  publication-title: Anat. Rec.
– volume: 226
  start-page: 423
  year: 1990
  end-page: 432
  ident: bib34
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 3. the hyaline cartilage modeling problem
  publication-title: Anat. Rec.
– start-page: 265
  year: 1989
  end-page: 271
  ident: bib65
  article-title: Effects of short-term immobilization versus continuous passive motion on the biomechanical and biochemical properties of the rabbit tendon
  publication-title: Clin. Orthop. Relat. Res.
– volume: 20
  start-page: 1083
  year: 1987
  end-page: 1093
  ident: bib58
  article-title: Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling
  publication-title: J. Biomech.
– volume: 46
  start-page: 1920
  year: 2011
  end-page: 1928
  ident: bib86
  article-title: A sequentially-defined stiffness model of the knee
  publication-title: Mech. Mach. Theory
– volume: 53
  start-page: 325
  year: 1982
  end-page: 332
  ident: bib2
  article-title: The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation
  publication-title: Acta Orthop. Scand.
– reference: Sancisi, N., Zannoli, D., Parenti Castelli, V., 2011a. A procedure to analyze and compare the sensitivity to geometrical parameter variations of one-dof mechanisms
– volume: 32
  start-page: 111
  year: 1999
  end-page: 118
  ident: bib60
  article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system
  publication-title: J. Biomech.
– volume: 228
  start-page: 935
  year: 2014
  end-page: 941
  ident: bib19
  article-title: A sound and efficient measure of joint congruence
  publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med.
– volume: 13
  start-page: S101
  year: 1999
  end-page: S112
  ident: bib12
  article-title: Mechanotransduction in bone-role of the lacuno-canalicular network
  publication-title: FASEB J.
– volume: 13
  start-page: 394
  year: 1998
  end-page: 402
  ident: bib75
  article-title: In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis
  publication-title: Clin. Biomech.
– volume: 33
  start-page: 1
  year: 2003
  end-page: 13
  ident: bib112
  article-title: Aticular cartilage functional histomorphology and mechanobiology: a research perspective
  publication-title: Bone
– volume: 15
  start-page: 370
  year: 2000
  end-page: 378
  ident: bib37
  article-title: Effects of growth on the response of the rabbit patellar tendon to stress shielding: a biomechanical study
  publication-title: Clin. Biomech.
– volume: 10
  start-page: 88
  year: 1992
  end-page: 95
  ident: bib95
  article-title: Rabbit knee immobilization: bone remodeling precedes cartilage degradation
  publication-title: J. Orthop. Res.
– volume: 127
  start-page: 692
  year: 2005
  end-page: 699
  ident: bib31
  article-title: Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy
  publication-title: J. Biomech. Eng.
– volume: 15
  start-page: 254
  year: 1994
  end-page: 260
  ident: bib3
  article-title: Softening of the lateral condyle articular cartilage in the canine knee joint after long distance (up to 40
  publication-title: Int. J. Sports Med.
– volume: 56
  start-page: 255
  year: 1997
  end-page: 261
  ident: bib51
  article-title: Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage
  publication-title: Ann. Rheum. Dis.
– volume: 5
  start-page: 108
  year: 1997
  end-page: 115
  ident: bib109
  article-title: A three-dimensional geometric model of the knee for the study of joint forces in gait
  publication-title: Gait Posture
– volume: 101
  start-page: 271
  year: 1979
  end-page: 278
  ident: bib90
  article-title: Determining the in-vivo areas of contact in the canine shoulder
  publication-title: J. Biomech. Eng.
– volume: 58
  start-page: 27
  year: 1999
  end-page: 34
  ident: bib93
  article-title: Thickness of human articular cartilage in joints of the lower limb
  publication-title: Ann. Rheum. Dis.
– volume: 20
  start-page: 1095
  year: 1987
  end-page: 1109
  ident: bib14
  article-title: Mechanical loading history and skeletal biology
  publication-title: J. Biomech.
– volume: 14
  start-page: 595
  year: 1999
  end-page: 611
  ident: bib78
  article-title: Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint
  publication-title: Clinm Biomechm
– volume: 52
  start-page: 363
  year: 2014
  end-page: 373
  ident: bib88
  article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint
  publication-title: Med. Biol. Eng. Comput.
– volume: 50
  start-page: 263
  year: 2009
  end-page: 269
  ident: bib54
  article-title: Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro
  publication-title: Connect. Tissue Res.
– volume: 162
  start-page: 266
  year: 2012
  end-page: 275
  ident: bib18
  article-title: Joint kinematics from functional adaptation: an application to the human ankle
  publication-title: Appl. Mech. Mater.
– volume: 225
  start-page: 725
  year: 2011
  end-page: 735
  ident: bib87
  article-title: A one degree-of-freedom spherical mechanism model of the human knee joint
  publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med.
– volume: 368
  start-page: 2669
  year: 2010
  end-page: 2682
  ident: bib1
  article-title: Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 43
  start-page: 480
  year: 1966
  end-page: 489
  ident: bib8
  article-title: Cellular remodeling in articular tissue
  publication-title: J. Dent. Res.
– volume: 405
  start-page: 704
  year: 2000
  end-page: 706
  ident: bib48
  article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone
  publication-title: Nature
– volume: 17
  start-page: 1545
  year: 2002
  end-page: 1554
  ident: bib80
  article-title: Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts
  publication-title: J. Bone Miner. Res.
– volume: 21
  start-page: 212
  year: 2005
  end-page: 225
  ident: bib61
  article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation
  publication-title: Gait Posture
– volume: 2
  start-page: 691
  year: 2000
  end-page: 713
  ident: bib40
  article-title: Cartilage tissue remodeling in response to mechanical forces
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 42
  start-page: 1403
  year: 2009
  end-page: 1408
  ident: bib29
  article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint
  publication-title: J. Biomech.
– volume: 1240
  start-page: 32
  year: 2011
  end-page: 37
  ident: bib63
  article-title: Mechanotransduction and cartilage integrity
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 156
  start-page: 52
  year: 1981
  end-page: 60
  ident: bib98
  article-title: Effects of activity on bone growth and development in the rat
  publication-title: Clin. Orthop. Relat. Res.
– volume: 72
  start-page: 308
  year: 1970
  end-page: 314
  ident: bib67
  article-title: Effects of mechanical forces on growing cartilage
  publication-title: Clin. Orthop. Relat. Res.
– volume: 226
  start-page: 433
  year: 1990
  end-page: 439
  ident: bib35
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 4. mechanical influences on intact fibrous tissues
  publication-title: Anat. Rec.
– volume: 23
  start-page: 325
  year: 1980
  end-page: 334
  ident: bib72
  article-title: Joint motion in the absence of normal loading does not maintain normal articular cartilage
  publication-title: Arthritis Rheum.
– volume: 13
  start-page: 365
  year: 1998
  end-page: 370
  ident: bib56
  article-title: Measurement of surface contact area of the ankle joint
  publication-title: Clin. Biomech.
– volume: 131
  start-page: 288
  year: 1978
  end-page: 293
  ident: bib77
  article-title: Effect of repetitive impulsive loading on the knee joints of rabbits
  publication-title: Clin. Orthop. Relat. Res.
– volume: 49
  start-page: 519
  year: 1978
  end-page: 528
  ident: bib24
  article-title: Joint changes after overuse and peak overloading of rabbit knees in vivo
  publication-title: Acta Orthop. Scand.
– reference: Conconi, M., Parenti-Castelli, V., 2012b. Sensitivity and stability analysis of a kinematic model for human joints (an application to human ankle). In: Proceedings of the XII International Symposium on 3D Analysis of Human Movement. Bologna, Italy, pp. 1–4.
– volume: 11
  start-page: 437
  year: 1999
  end-page: 455
  ident: bib36
  article-title: An approach to estimating bone and joint loads and muscle strength in living subjects and skeletal remains
  publication-title: Am. J. Hum. Biol.
– volume: 38
  start-page: 1205
  year: 2005
  end-page: 1212
  ident: bib23
  article-title: Articular contact at the tibiotalar joint in passive flexion
  publication-title: J. Biomech.
– volume: 40
  start-page: S144
  year: 2007
  ident: bib71
  article-title: Equivalent spatial mechanisms for modelling passive motion of the human knee
  publication-title: J. Biomech.
– year: 1985
  ident: bib115
  article-title: Contact mechanics
– volume: 192
  start-page: 457
  year: 1980
  end-page: 466
  ident: bib57
  article-title: The influence of function on the development of bone curvature. An experimental study on the rat tibia
  publication-title: J. Zool.
– volume: 711
  start-page: 157
  year: 1986
  end-page: 168
  ident: bib99
  article-title: Experimental studies on the influences of physical activity on ligaments, tendons and joints: a brief review
  publication-title: Acta Med. Scand.
– volume: 37
  start-page: 148
  year: 2005
  end-page: 154
  ident: bib10
  article-title: Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis
  publication-title: Equine Vet. J.
– volume: 13
  start-page: 450
  year: 1995
  end-page: 458
  ident: bib5
  article-title: Contact areas in the thumb carpometacarpal joint
  publication-title: J. Orthop. Res.
– volume: 131
  start-page: 75
  year: 1988
  end-page: 92
  ident: bib7
  article-title: Bone curvature: sacrificing strength for load predictability?
  publication-title: J. Theor. Biol.
– volume: 7
  start-page: 37
  year: 1979
  end-page: 46
  ident: bib38
  article-title: The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon
  publication-title: Connect. Tissue Res.
– volume: 31
  start-page: 1127
  year: 1998
  end-page: 1136
  ident: bib110
  article-title: Ligaments and articular contact guide passive knee flexion
  publication-title: J. Biomech
– volume: 18
  start-page: 189
  year: 1985
  end-page: 200
  ident: bib13
  article-title: Bone remodeling in response to in vivo fatigue microdamage
  publication-title: J. Biomech.
– volume: 226
  start-page: 414
  year: 1990
  end-page: 422
  ident: bib33
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 2. redefining Wolff's law: the remodeling problem
  publication-title: Anat. Rec.
– volume: 46
  start-page: 2073
  year: 2002
  end-page: 2078
  ident: bib104
  article-title: Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement
  publication-title: Arthritis Rheum.
– volume: 75
  start-page: 196
  year: 2010
  end-page: 198
  ident: bib64
  article-title: Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?
  publication-title: Med. Hypotheses
– volume: 129
  start-page: 293
  year: 1987
  end-page: 300
  ident: bib9
  article-title: Effects of mechanical loading on surface morphology of the condylar cartilage of the mandible in rats
  publication-title: Acta Anat.
– reference: Roux, W., 1881. Der Zuchtende Kampf der Teile, oder die “Teilauslese” im Organismus (“Theorie der Funktionellen Anpassung”).
– volume: 41
  start-page: 2353
  year: 2008
  ident: 10.1016/j.jbiomech.2015.07.042_bib50
  article-title: Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.05.037
– volume: 17
  start-page: 1545
  year: 2002
  ident: 10.1016/j.jbiomech.2015.07.042_bib80
  article-title: Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.8.1545
– volume: 38
  start-page: 1838
  year: 2005
  ident: 10.1016/j.jbiomech.2015.07.042_bib91
  article-title: Cellular accommodation and the response of bone to mechanical loading
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.08.017
– volume: 40
  start-page: 199
  year: 1998
  ident: 10.1016/j.jbiomech.2015.07.042_bib108
  article-title: Developmental immobilization induces failure of joint cavity formation by a process involving selective local changes in glycosaminoglycan synthesis
  publication-title: Trans. Orthop. Res. Soc.
– volume: 38
  start-page: 1205
  year: 2005
  ident: 10.1016/j.jbiomech.2015.07.042_bib23
  article-title: Articular contact at the tibiotalar joint in passive flexion
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.06.019
– volume: 52
  start-page: 363
  issue: 4
  year: 2014
  ident: 10.1016/j.jbiomech.2015.07.042_bib88
  article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1137-y
– volume: 32
  start-page: 111
  year: 1999
  ident: 10.1016/j.jbiomech.2015.07.042_bib60
  article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00157-2
– volume: 226
  start-page: 414
  year: 1990
  ident: 10.1016/j.jbiomech.2015.07.042_bib33
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 2. redefining Wolff's law: the remodeling problem
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092260403
– volume: 14
  start-page: 595
  year: 1999
  ident: 10.1016/j.jbiomech.2015.07.042_bib78
  article-title: Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint
  publication-title: Clinm Biomechm
  doi: 10.1016/S0268-0033(99)00015-7
– volume: 36
  start-page: 284
  year: 2009
  ident: 10.1016/j.jbiomech.2015.07.042_bib102
  article-title: A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2008.10.004
– volume: 427
  start-page: 69
  year: 2004
  ident: 10.1016/j.jbiomech.2015.07.042_bib16
  article-title: The mechanobiology of articular cartilage development and degeneration
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/01.blo.0000144970.05107.7e
– volume: 12
  start-page: 1737
  year: 1997
  ident: 10.1016/j.jbiomech.2015.07.042_bib52
  article-title: Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1997.12.10.1737
– volume: 25
  start-page: 572
  year: 1862
  ident: 10.1016/j.jbiomech.2015.07.042_bib46
  article-title: Anatomische studien an den extremititengclenken neugeborener und erwachsener
  publication-title: Virchows Arch. A Pathol. Anat. Histopathol.
  doi: 10.1007/BF01879806
– volume: 127
  start-page: 692
  year: 2005
  ident: 10.1016/j.jbiomech.2015.07.042_bib31
  article-title: Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1933949
– volume: 13
  start-page: 365
  year: 1998
  ident: 10.1016/j.jbiomech.2015.07.042_bib56
  article-title: Measurement of surface contact area of the ankle joint
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00011-4
– volume: 1240
  start-page: 32
  year: 2011
  ident: 10.1016/j.jbiomech.2015.07.042_bib63
  article-title: Mechanotransduction and cartilage integrity
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2011.06301.x
– ident: 10.1016/j.jbiomech.2015.07.042_bib83
– volume: 226
  start-page: 403
  year: 1990
  ident: 10.1016/j.jbiomech.2015.07.042_bib32
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 1. redefining Wolff's law: the bone modeling problem
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092260402
– volume: 368
  start-page: 2669
  year: 2010
  ident: 10.1016/j.jbiomech.2015.07.042_bib1
  article-title: Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2010.0073
– volume: 122
  start-page: 465
  year: 2000
  ident: 10.1016/j.jbiomech.2015.07.042_bib17
  article-title: Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and pH dependent
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1289639
– volume: 192
  start-page: 457
  year: 1980
  ident: 10.1016/j.jbiomech.2015.07.042_bib57
  article-title: The influence of function on the development of bone curvature. An experimental study on the rat tibia
  publication-title: J. Zool.
  doi: 10.1111/j.1469-7998.1980.tb04243.x
– year: 1986
  ident: 10.1016/j.jbiomech.2015.07.042_bib111
– volume: 40
  start-page: S144
  year: 2007
  ident: 10.1016/j.jbiomech.2015.07.042_bib71
  article-title: Equivalent spatial mechanisms for modelling passive motion of the human knee
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(07)70140-9
– volume: 11
  start-page: 437
  year: 1999
  ident: 10.1016/j.jbiomech.2015.07.042_bib36
  article-title: An approach to estimating bone and joint loads and muscle strength in living subjects and skeletal remains
  publication-title: Am. J. Hum. Biol.
  doi: 10.1002/(SICI)1520-6300(1999)11:4<437::AID-AJHB4>3.0.CO;2-K
– volume: 17
  start-page: 509
  year: 1999
  ident: 10.1016/j.jbiomech.2015.07.042_bib43
  article-title: Mechanically modulated cartilage growth may regulate joint surface morphogenesis
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100170408
– volume: 7
  start-page: 37
  year: 1979
  ident: 10.1016/j.jbiomech.2015.07.042_bib38
  article-title: The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008207909152351
– volume: 15
  start-page: 254
  year: 1994
  ident: 10.1016/j.jbiomech.2015.07.042_bib3
  article-title: Softening of the lateral condyle articular cartilage in the canine knee joint after long distance (up to 40km/day) running training lasting one year
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2007-1021056
– volume: 20
  start-page: 1135
  year: 1987
  ident: 10.1016/j.jbiomech.2015.07.042_bib47
  article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90030-3
– volume: 23
  start-page: 325
  year: 1980
  ident: 10.1016/j.jbiomech.2015.07.042_bib72
  article-title: Joint motion in the absence of normal loading does not maintain normal articular cartilage
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.1780230310
– volume: 711
  start-page: 157
  year: 1986
  ident: 10.1016/j.jbiomech.2015.07.042_bib99
  article-title: Experimental studies on the influences of physical activity on ligaments, tendons and joints: a brief review
  publication-title: Acta Med. Scand.
  doi: 10.1111/j.0954-6820.1986.tb08945.x
– volume: 405
  start-page: 704
  year: 2000
  ident: 10.1016/j.jbiomech.2015.07.042_bib48
  article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone
  publication-title: Nature
  doi: 10.1038/35015116
– ident: 10.1016/j.jbiomech.2015.07.042_bib30
– volume: 297
  start-page: 253
  year: 1993
  ident: 10.1016/j.jbiomech.2015.07.042_bib107
  article-title: Knee immobilization inhibits biomechanical maturation of the rabbit medial collateral ligament
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-199312000-00042
– year: 1985
  ident: 10.1016/j.jbiomech.2015.07.042_bib115
– volume: 12
  start-page: 198
  year: 2008
  ident: 10.1016/j.jbiomech.2015.07.042_bib49
  article-title: Tensegrity and mechanotransduction
  publication-title: J. Bodyw. Mov. Ther.
  doi: 10.1016/j.jbmt.2008.04.038
– volume: 59
  start-page: 27
  year: 1977
  ident: 10.1016/j.jbiomech.2015.07.042_bib22
  article-title: Biomechanical analysis of static forces in the thumb during hand function
  publication-title: J. Bone Jt. Surg. Am.
  doi: 10.2106/00004623-197759010-00004
– volume: 37
  start-page: 217
  year: 2000
  ident: 10.1016/j.jbiomech.2015.07.042_bib114
  article-title: Tendon and ligament adaptation to exercise, immobilization, and remobilization
  publication-title: J. Rehabil. Res. Dev.
– volume: 46
  start-page: 2073
  year: 2002
  ident: 10.1016/j.jbiomech.2015.07.042_bib104
  article-title: Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.10462
– volume: 14
  start-page: 401
  year: 1966
  ident: 10.1016/j.jbiomech.2015.07.042_bib25
  article-title: The role of movement in embryonic joint development
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(66)90022-4
– volume: 226
  start-page: 433
  year: 1990
  ident: 10.1016/j.jbiomech.2015.07.042_bib35
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 4. mechanical influences on intact fibrous tissues
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092260405
– volume: 46
  start-page: 1920
  year: 2011
  ident: 10.1016/j.jbiomech.2015.07.042_bib86
  article-title: A sequentially-defined stiffness model of the knee
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2011.07.006
– start-page: 265
  year: 1989
  ident: 10.1016/j.jbiomech.2015.07.042_bib65
  article-title: Effects of short-term immobilization versus continuous passive motion on the biomechanical and biochemical properties of the rabbit tendon
  publication-title: Clin. Orthop. Relat. Res.
– volume: 31
  start-page: 107
  year: 1998
  ident: 10.1016/j.jbiomech.2015.07.042_bib113
  article-title: A model for loading-dependent growth, development, and adaptation of tendons and ligaments
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)00120-6
– volume: 218
  start-page: 349
  year: 2004
  ident: 10.1016/j.jbiomech.2015.07.042_bib94
  article-title: A kinematic model of the wrist based on maximization of joint contact area
  publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med.
  doi: 10.1243/0954411041932791
– volume: 131
  start-page: 75
  year: 1988
  ident: 10.1016/j.jbiomech.2015.07.042_bib7
  article-title: Bone curvature: sacrificing strength for load predictability?
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(88)80122-X
– volume: 11
  start-page: 581
  year: 1993
  ident: 10.1016/j.jbiomech.2015.07.042_bib39
  article-title: Cellular shape and pressure may mediate mechanical control of tissue composition in tendons
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100110413
– volume: 208
  start-page: 491
  year: 2006
  ident: 10.1016/j.jbiomech.2015.07.042_bib27
  article-title: The effects of exercise on human articular cartilage
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2006.00546.x
– year: 1969
  ident: 10.1016/j.jbiomech.2015.07.042_bib97
– volume: 13
  start-page: 394
  year: 1998
  ident: 10.1016/j.jbiomech.2015.07.042_bib75
  article-title: In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00091-6
– volume: 20
  start-page: 1083
  year: 1987
  ident: 10.1016/j.jbiomech.2015.07.042_bib58
  article-title: Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90026-1
– volume: 288
  start-page: 776
  year: 2006
  ident: 10.1016/j.jbiomech.2015.07.042_bib76
  article-title: Functional adaptation of the femoral head to voluntary exercise
  publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
  doi: 10.1002/ar.a.20345
– volume: 129
  start-page: 293
  year: 1987
  ident: 10.1016/j.jbiomech.2015.07.042_bib9
  article-title: Effects of mechanical loading on surface morphology of the condylar cartilage of the mandible in rats
  publication-title: Acta Anat.
  doi: 10.1159/000146418
– volume: 31
  start-page: 1127
  year: 1998
  ident: 10.1016/j.jbiomech.2015.07.042_bib110
  article-title: Ligaments and articular contact guide passive knee flexion
  publication-title: J. Biomech
  doi: 10.1016/S0021-9290(98)00119-5
– volume: 135
  start-page: 136
  year: 1983
  ident: 10.1016/j.jbiomech.2015.07.042_bib41
  article-title: A joint coordinate systenf for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 42
  start-page: 1403
  issue: 10
  year: 2009
  ident: 10.1016/j.jbiomech.2015.07.042_bib29
  article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.04.024
– volume: 20
  start-page: 1095
  year: 1987
  ident: 10.1016/j.jbiomech.2015.07.042_bib14
  article-title: Mechanical loading history and skeletal biology
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90027-3
– volume: 17
  start-page: 897
  year: 1984
  ident: 10.1016/j.jbiomech.2015.07.042_bib59
  article-title: Static vs dynamic loads as an influence on bone remodelling
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(84)90003-4
– volume: 123
  start-page: 90
  year: 1985
  ident: 10.1016/j.jbiomech.2015.07.042_bib84
  article-title: Embryonal hypermobility and articular development
  publication-title: Acta Anat.
  doi: 10.1159/000146045
– volume: 37
  start-page: 148
  year: 2005
  ident: 10.1016/j.jbiomech.2015.07.042_bib10
  article-title: Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis
  publication-title: Equine Vet. J.
  doi: 10.2746/0425164054223769
– volume: 193
  start-page: 481
  year: 1998
  ident: 10.1016/j.jbiomech.2015.07.042_bib6
  article-title: Fibrocartilage in tendons and ligaments – an adaptation to compressive load
  publication-title: J. Anat.
  doi: 10.1046/j.1469-7580.1998.19340481.x
– volume: 50
  start-page: 263
  year: 2009
  ident: 10.1016/j.jbiomech.2015.07.042_bib54
  article-title: Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro
  publication-title: Connect. Tissue Res.
  doi: 10.1080/03008200902846270
– ident: 10.1016/j.jbiomech.2015.07.042_bib20
– volume: 270
  start-page: 175
  year: 2003
  ident: 10.1016/j.jbiomech.2015.07.042_bib45
  article-title: Correlation of knee-joint cartilage morphology with muscle cross-sectional areas vs. anthropometric variables
  publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
  doi: 10.1002/ar.a.10001
– volume: 226
  start-page: 423
  year: 1990
  ident: 10.1016/j.jbiomech.2015.07.042_bib34
  article-title: Skeletal structural adaptations to mechanical usage (SATMU): 3. the hyaline cartilage modeling problem
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092260404
– ident: 10.1016/j.jbiomech.2015.07.042_bib82
  doi: 10.1109/IEMBS.1995.579667
– ident: 10.1016/j.jbiomech.2015.07.042_bib89
  doi: 10.1115/DETC2011-48244
– volume: 75
  start-page: 196
  year: 2010
  ident: 10.1016/j.jbiomech.2015.07.042_bib64
  article-title: Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2010.02.021
– volume: 234
  start-page: 245
  year: 2005
  ident: 10.1016/j.jbiomech.2015.07.042_bib68
  article-title: Change in knee cartilage T2 at MR imaging after running: a feasibility study
  publication-title: Radiology
  doi: 10.1148/radiol.2341040041
– volume: 13
  start-page: 450
  year: 1995
  ident: 10.1016/j.jbiomech.2015.07.042_bib5
  article-title: Contact areas in the thumb carpometacarpal joint
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100130320
– volume: 156
  start-page: 61
  year: 1981
  ident: 10.1016/j.jbiomech.2015.07.042_bib11
  article-title: The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-198105000-00008
– volume: 13
  start-page: S101
  year: 1999
  ident: 10.1016/j.jbiomech.2015.07.042_bib12
  article-title: Mechanotransduction in bone-role of the lacuno-canalicular network
  publication-title: FASEB J.
  doi: 10.1096/fasebj.13.9001.s101
– volume: 162
  start-page: 266
  year: 2012
  ident: 10.1016/j.jbiomech.2015.07.042_bib18
  article-title: Joint kinematics from functional adaptation: an application to the human ankle
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.162.266
– volume: 269
  start-page: E438
  year: 1995
  ident: 10.1016/j.jbiomech.2015.07.042_bib101
  article-title: Mechanotransduction in bone: role of strain rate
  publication-title: Am. J. Physiol.
– volume: 101
  start-page: 271
  year: 1979
  ident: 10.1016/j.jbiomech.2015.07.042_bib90
  article-title: Determining the in-vivo areas of contact in the canine shoulder
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3426257
– volume: 131
  start-page: 288
  year: 1978
  ident: 10.1016/j.jbiomech.2015.07.042_bib77
  article-title: Effect of repetitive impulsive loading on the knee joints of rabbits
  publication-title: Clin. Orthop. Relat. Res.
– volume: 16
  start-page: 918
  year: 2001
  ident: 10.1016/j.jbiomech.2015.07.042_bib44
  article-title: Effects of loading frequency on mechanically induced bone formation
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2001.16.5.918
– volume: 8
  start-page: 455
  year: 2006
  ident: 10.1016/j.jbiomech.2015.07.042_bib81
  article-title: Biomechanical and molecular regulation of bone remodeling
  publication-title: Annum Revm Biomedm Eng.
  doi: 10.1146/annurev.bioeng.8.061505.095721
– volume: 15
  start-page: 370
  year: 2000
  ident: 10.1016/j.jbiomech.2015.07.042_bib37
  article-title: Effects of growth on the response of the rabbit patellar tendon to stress shielding: a biomechanical study
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(99)00077-7
– volume: 58
  start-page: 27
  year: 1999
  ident: 10.1016/j.jbiomech.2015.07.042_bib93
  article-title: Thickness of human articular cartilage in joints of the lower limb
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.58.1.27
– volume: 36
  start-page: 125
  year: 2003
  ident: 10.1016/j.jbiomech.2015.07.042_bib28
  article-title: A constraint-based approach to modelling the mobility of the human knee joint
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00276-2
– volume: 156
  start-page: 52
  year: 1981
  ident: 10.1016/j.jbiomech.2015.07.042_bib98
  article-title: Effects of activity on bone growth and development in the rat
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-198105000-00007
– volume: 21
  start-page: 212
  year: 2005
  ident: 10.1016/j.jbiomech.2015.07.042_bib61
  article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2004.05.002
– volume: 10
  start-page: 88
  year: 1992
  ident: 10.1016/j.jbiomech.2015.07.042_bib95
  article-title: Rabbit knee immobilization: bone remodeling precedes cartilage degradation
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100100111
– volume: 29
  start-page: 707
  year: 1996
  ident: 10.1016/j.jbiomech.2015.07.042_bib42
  article-title: Biomechanical studies of the remodeling of knee joint tendons and ligaments
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00163-8
– volume: 56
  start-page: 3706
  year: 2007
  ident: 10.1016/j.jbiomech.2015.07.042_bib69
  article-title: Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.23024
– volume: 43
  start-page: 480
  year: 1966
  ident: 10.1016/j.jbiomech.2015.07.042_bib8
  article-title: Cellular remodeling in articular tissue
  publication-title: J. Dent. Res.
  doi: 10.1177/00220345660450030801
– volume: 49
  start-page: 519
  year: 1978
  ident: 10.1016/j.jbiomech.2015.07.042_bib24
  article-title: Joint changes after overuse and peak overloading of rabbit knees in vivo
  publication-title: Acta Orthop. Scand.
  doi: 10.3109/17453677808993232
– volume: 18
  start-page: 189
  year: 1985
  ident: 10.1016/j.jbiomech.2015.07.042_bib13
  article-title: Bone remodeling in response to in vivo fatigue microdamage
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90204-0
– volume: 42
  start-page: 250
  year: 2008
  ident: 10.1016/j.jbiomech.2015.07.042_bib103
  article-title: A unified theory for osteonal and hemi-osteonal remodeling
  publication-title: Bone
  doi: 10.1016/j.bone.2007.10.009
– volume: 53
  start-page: 325
  year: 1982
  ident: 10.1016/j.jbiomech.2015.07.042_bib2
  article-title: The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation
  publication-title: Acta Orthop. Scand.
  doi: 10.3109/17453678208992224
– volume: 72
  start-page: 308
  year: 1970
  ident: 10.1016/j.jbiomech.2015.07.042_bib67
  article-title: Effects of mechanical forces on growing cartilage
  publication-title: Clin. Orthop. Relat. Res.
– volume: 15
  start-page: 593
  year: 1997
  ident: 10.1016/j.jbiomech.2015.07.042_bib96
  article-title: Surface remodeling of trabecular bone using a tissue level model
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100150416
– volume: 13
  start-page: 136
  year: 2009
  ident: 10.1016/j.jbiomech.2015.07.042_bib116
  article-title: Ligaments: a source of musculoskeletal disorders
  publication-title: J. Bodyw. Mov. Ther.
  doi: 10.1016/j.jbmt.2008.02.001
– volume: 2
  start-page: 691
  year: 2000
  ident: 10.1016/j.jbiomech.2015.07.042_bib40
  article-title: Cartilage tissue remodeling in response to mechanical forces
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.2.1.691
– volume: 228
  start-page: 935
  issue: 9
  year: 2014
  ident: 10.1016/j.jbiomech.2015.07.042_bib19
  article-title: A sound and efficient measure of joint congruence
  publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med.
  doi: 10.1177/0954411914550848
– volume: 35
  start-page: 293
  year: 1984
  ident: 10.1016/j.jbiomech.2015.07.042_bib73
  article-title: Quantitative morphological and biochemical investigations on the effects of physical exercise and immobilization on the articular cartilage of young rabbits
  publication-title: Acta. Biol. Hung.
– volume: 225
  start-page: 725
  year: 2011
  ident: 10.1016/j.jbiomech.2015.07.042_bib87
  article-title: A one degree-of-freedom spherical mechanism model of the human knee joint
  publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med.
  doi: 10.1177/0954411911406951
– volume: 33
  start-page: 1
  year: 2003
  ident: 10.1016/j.jbiomech.2015.07.042_bib112
  article-title: Aticular cartilage functional histomorphology and mechanobiology: a research perspective
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00083-8
– volume: 12
  start-page: 580
  year: 1997
  ident: 10.1016/j.jbiomech.2015.07.042_bib70
  article-title: Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1997.12.4.580
– volume: 11
  start-page: 68
  year: 1993
  ident: 10.1016/j.jbiomech.2015.07.042_bib105
  article-title: Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100110109
– volume: 5
  start-page: 108
  year: 1997
  ident: 10.1016/j.jbiomech.2015.07.042_bib109
  article-title: A three-dimensional geometric model of the knee for the study of joint forces in gait
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(96)01080-6
– volume: 6
  start-page: 804
  year: 1988
  ident: 10.1016/j.jbiomech.2015.07.042_bib15
  article-title: The role of mechanical loading histories in the development of diarthrodial joints
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100060604
– volume: 187
  start-page: 231
  year: 1993
  ident: 10.1016/j.jbiomech.2015.07.042_bib79
  article-title: Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius
  publication-title: Anat. Embryol.
– volume: 120
  start-page: 355
  year: 1998
  ident: 10.1016/j.jbiomech.2015.07.042_bib92
  article-title: Swelling and curling behaviors of articular cartilage
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2798002
– volume: 56
  start-page: 255
  year: 1997
  ident: 10.1016/j.jbiomech.2015.07.042_bib51
  article-title: Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.56.4.255
– year: 1980
  ident: 10.1016/j.jbiomech.2015.07.042_bib74
– volume: 24
  start-page: 512
  year: 1862
  ident: 10.1016/j.jbiomech.2015.07.042_bib106
  article-title: Chirurgische erfahrungen uber knochenverbiegungen und knochenwachsthum
  publication-title: Virchows Arch. A Pathol. Anat. Histopathol.
  doi: 10.1007/BF01879454
SSID ssj0007479
Score 2.25977
Snippet Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature...
Abstract Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2960
SubjectTerms Accuracy
Adaptation
Adaptation, Physiological
Ankle Joint - physiology
Articular
Biomechanical Phenomena
Biomechanics
Bones
Congruences
Functional adaptation
Human ankle
Humans
Joint congruence
Joint kinmatics
Kinematics
Mathematical models
Mechanical Phenomena
Models, Biological
Movement
Optimization
Physical Medicine and Rehabilitation
Physiology
Subject-specific modeling
Tibia - physiology
Translations
Working conditions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_0CqIPpV79uFolgvgWm002ya4vcpWWUrCIWKhPIbfJQq-6e3avD_73TrLZtS9XRThYjks2tzuTmd9kvgDeoFavQhESinIvp7nzjFohOLVa5QuPu6_0MUD2TJ2c56cX8iIduHUprHKQiVFQu7YKZ-QHGd4sQwtZqQ-rnzR0jQre1dRC4z5soQgu5AS2Do_OPn8ZZTGC5RTkkVEEAuxWjvDy3TJmuEeXRCZjCc-cb1JPm-BnVEPHO7Cd8COZ9wR_DPd8M4XdeYO2849f5C2JEZ3xqHwKj24VG5zCg0_Jjb4L307by2ZNrvBLrNjakZBlQoKO648GiXV21Tvp35M5QW687HsvEfwgZCQh06SlCNztNYnMl7qAPYHz46OvH09o6rFAK7SL15RbFHZWWqeELZ2quKplLSvhvGIaCRza_THlJBLQ-2zhrEcAmCm81LlTCy6ewqRpG_8cSO1UKdHILatQDJjrklWMW-8QEtU5r-UM5PBqTZUKkIc-GN_NEGm2NANJTCCJYdogSWZwMM5b9SU4_jpDD5QzQ4IpikSDWuL_Zvou7ezOZKbjhpng5M4CRyGgDs7UYgblODOBlx6U_NOq-wN7mT8LjQw_g9fjz7j5g0fHNr696ceUTHOh7xqjCzS0ZVhm45hCaIGmvcb7POvZe3zVPBZlY2Lv7j_5Ah6GJwqhNFmxD5P19Y1_iXhtvXiVNuVvQIM-Lg
  priority: 102
  providerName: ProQuest
Title Joint kinematics from functional adaptation: A validation on the tibio-talar articulation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929015004388
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929015004388
https://dx.doi.org/10.1016/j.jbiomech.2015.07.042
https://www.ncbi.nlm.nih.gov/pubmed/26300403
https://www.proquest.com/docview/1718119866
https://www.proquest.com/docview/1718907237
https://www.proquest.com/docview/1778026542
https://www.proquest.com/docview/1837340777
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1LaxNB-KO0IHqQmvpIW8sI4m2a3Xlme4ulJVYMIhbiaZjszEJS3YQmPfTib_eb2dm0IlFRCLtsMrOTne-93wvgNUr1MhQhocj3BBXOZ9RyzqjVSkw8Ul_hY4DsSA0vxcVYjrfgtM2FCWGVifc3PD1y6_RNL-1mbzGdhhxfpDYWTfbgzgoJv0LoUD__-PtdmAeqyynMI6dh9L0s4dnxLOa4R6dELmMRT8E2CahNCmgUROe78DhpkGTQ_MknsOXrDuwNarSev92SNyTGdMaX5R14dK_cYAcefEiO9D34cjGf1ityhRexZuuShDwTEqRc83KQWGcXjZv-hAwI4uO06b5E8INKIwm5JnOKqru9JnHDUh-wp3B5fvb5dEhTlwVaomW8oswiu7PSOsVt4VTJVCUrWXLnVaYRxKHhX6acRBB6n0-c9agC5gpPlXBqwvgz2K7ntX8BpHKqkGjmFmUoB8x0kZUZs96hUlQJVskuyHZrTZlKkIdOGF9NG2s2My1ITACJybRBkHSht563aIpw_HGGbiFn2hRTZIoG5cS_zfTLRNtLk5slM5n5Bf-6UKxn_oTCf7XqYYte5m4hpJ88L_pKdeHV-mck_-DTsbWf3zRjikwzrn83RvfR1JZhmY1j-lxzNO413ud5g97rrWaxLFvG9__jAQ_gYbgKkTZ5_xC2V9c3_iWqc6vJUaRXPOqxPoKdwbv3wxGe356NPn76AVqRSz8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3raxQxEB9KCz4-iF59nFaNoH5bm81ukltB5NSW6-sQaaF-irlNFnrq7tm7Iv2n_BudyT7sl6siFBaO5ZLNbjKZ-U3mBfAcpXpOSUgi5HtplDrPI5skIrJapROPuy_zwUF2rEZH6e6xPF6BX20sDLlVtjwxMGpX5XRGvhnjw2LUkJV6O_sRUdUosq62JTRqstjz5z9RZZu_2fmA6_tCiO2tw_ejqKkqEOWoCS4iYXF7W2mdSmzmVC5UIQuZJ84rrvGTqMAdV07iK3sfT5z1CHlihT9F6tSEEh0gy19DmJHhLlp7tzX--Knj_QjOG6eSOELgwS_EJE9fTUNEfTCBxDKkDE3FMnG4DO4Gsbd9G241eJUNawK7Ayu-7MH6sERd_fs5e8mCB2k4mu_BzQvJDXtw7aAx26_D593qpFywr3gTMsTOGUW1MJKp9VEks87OaqeA12zIkPpP6lpPDC-EqIwiW6oIFQV7ygKxN1XH7sLRlcz-PVgtq9I_AFY4lUlUqrOckg8LnfGcC-sdQrAiFYXsg2yn1uRNwnOqu_HNtJ5tU9MuiaElMVwbXJI-bHb9ZnXKj7_20O3KmTagFVmwQan0fz39vOEkcxObuTDckFE9JopCAE_G20Efsq5nA5ZqEPRPo2605GX-DNRtsD486_5GZkMWJFv66qxuk3EtEn1ZGz1AxV7SMEvbDBKdpFxrfM79mry7qRYhCRxPHl7-kk_h-ujwYN_s74z3HsEN-jpy44kHG7C6OD3zjxErLiZPmg3K4MtV84TfhKJ8Tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6ULRR9EN16Wa0aQX2Lm8lMkhlBZLVdetGliIX6lGYnGeiqM2t3i_Sv-es8yVzsy1YRCgPLsMlkJjk55zs5N4DnKNVzn4SEIt9LaGIdoyaOOTVKJlOHuy9zwUF2InePkv1jcbwGv9pYGO9W2fLEwKhtlfsz8mGED4tQQ5ZyWDRuEYfb47fzH9RXkPKW1racRk0iB-7iJ6pvizd727jWLzgf73x-v0ubCgM0R61wSbnBrW6EsTI2mZU5l4UoRB5bJ5nCz_PF7pi0Al_fuWhqjUP4E0n8KRIrpz7pAbL_dYVSMe3B-rudyeGnTg4gUG8cTCKKIIRdik-evZqF6PpgDolESB-a8FWicRX0DSJwfBtuNdiVjGpiuwNrruzD5qhEvf37BXlJgjdpOKbvw81LiQ77sPGxMeFvwpf96rRckq94E7LFLoiPcCFevtbHksRYM68dBF6TEcGdcFrXfSJ4IVwlPsqloqg0mDMSCL-pQHYXjq5l9u9Br6xK9wBIYWUmUMHOcp-ImKuM5YwbZxGOFQkvxABEO7U6b5Kf-xoc33Tr5TbT7ZJovySaKY1LMoBh129ep__4aw_Vrpxug1uRHWuUUP_X0y0arrLQkV5wzbQ3sEeeohDMe0NuOoCs69kApxoQ_dOoWy156T8DdZttAM-6v5HxeGuSKV11XrfJmOKxuqqNSlHJF36YlW3SWMUJUwqfc78m726qeUgIx-KHV7_kU9hAXqA_7E0OHsEN_3HeoydKt6C3PDt3jxE2LqdPmv1J4OS6WcJvKyaAew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+kinematics+from+functional+adaptation%3A+A+validation+on+the+tibio-talar+articulation&rft.jtitle=Journal+of+biomechanics&rft.au=Conconi%2C+Michele&rft.au=Leardini%2C+Alberto&rft.au=Parenti-Castelli%2C+Vincenzo&rft.date=2015-09-18&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=48&rft.issue=12&rft.spage=2960&rft.epage=2967&rft_id=info:doi/10.1016%2Fj.jbiomech.2015.07.042&rft.externalDocID=S0021929015004388
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929015X0011X%2Fcov150h.gif