Joint kinematics from functional adaptation: A validation on the tibio-talar articulation
Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must...
Saved in:
Published in | Journal of biomechanics Vol. 48; no. 12; pp. 2960 - 2967 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
18.09.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2015.07.042 |
Cover
Loading…
Abstract | Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes. |
---|---|
AbstractList | Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes. Abstract Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes. Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07 degree and 2.29mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes. Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes. Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes. |
Author | Conconi, Michele Parenti-Castelli, Vincenzo Leardini, Alberto |
Author_xml | – sequence: 1 givenname: Michele surname: Conconi fullname: Conconi, Michele email: michele.conconi@unibo.it organization: Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR) Alma Mater Studiorum – University of Bologna, Italy – sequence: 2 givenname: Alberto surname: Leardini fullname: Leardini, Alberto organization: Movement Analysis Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy – sequence: 3 givenname: Vincenzo surname: Parenti-Castelli fullname: Parenti-Castelli, Vincenzo organization: Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR) Alma Mater Studiorum – University of Bologna, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26300403$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1r3DAQhkVJaTZp_0Iw9NKLnZFkS3YppSG0aUugh7aHnoQsjYkcf2wlOZB_X3udtLCHbkAwDHrmZWbeOSFHwzggIWcUMgpUnLdZW7uxR3OTMaBFBjKDnD0jG1pKnjJewhHZADCaVqyCY3ISQgsAMpfVC3LMBAfIgW_Ir6-jG2Jy6wbsdXQmJI0f-6SZBhPdOOgu0VZvo16St8lFcqc7Z3dZMr94g0l0cyNp1J32ifazxNTt_l-S543uAr56iKfk56ePPy4_p9ffrr5cXlynRlQQU6YppbrQVnBdWWGYaIqmMNyiAIk1clEJELbQnCPS2moUhaBiDk1uRc34KXmz6m79-HvCEFXvgsGu0wOOU1C05JLnIKU8jEpZAhNF_gRVScsKJOOL6us9tB0nP69upSitSiFm6uyBmuoerdp612t_rx6tmAGxAsaPIXhs_iIU1OK5atWj52rxXIFUsGv13V6hcath0WvXHS7_sJbjbNKdQ6-CcTgYtM6jicqO7rDE-z0J07nBGd3d4j2Gf-tQgSlQ35e7XM6SFvPovCz_L_CUDv4AcI_1Dg |
CitedBy_id | crossref_primary_10_1016_j_jbiomech_2017_04_029 crossref_primary_10_1115_1_4043028 crossref_primary_10_3390_lubricants7020015 crossref_primary_10_1016_j_fcl_2023_01_001 crossref_primary_10_1016_j_jbiomech_2020_110186 crossref_primary_10_1016_j_gaitpost_2020_06_022 crossref_primary_10_1080_21681163_2018_1473169 crossref_primary_10_2351_7_0000459 crossref_primary_10_1016_j_gaitpost_2016_07_030 crossref_primary_10_3390_app11188348 crossref_primary_10_1109_TBME_2020_3018113 crossref_primary_10_1002_ajpa_24826 crossref_primary_10_1016_j_jbiomech_2018_11_016 |
Cites_doi | 10.1016/j.jbiomech.2008.05.037 10.1359/jbmr.2002.17.8.1545 10.1016/j.jbiomech.2004.08.017 10.1016/j.jbiomech.2004.06.019 10.1007/s11517-014-1137-y 10.1016/S0021-9290(98)00157-2 10.1002/ar.1092260403 10.1016/S0268-0033(99)00015-7 10.1016/j.mechrescom.2008.10.004 10.1097/01.blo.0000144970.05107.7e 10.1359/jbmr.1997.12.10.1737 10.1007/BF01879806 10.1115/1.1933949 10.1016/S0268-0033(98)00011-4 10.1111/j.1749-6632.2011.06301.x 10.1002/ar.1092260402 10.1098/rsta.2010.0073 10.1115/1.1289639 10.1111/j.1469-7998.1980.tb04243.x 10.1016/S0021-9290(07)70140-9 10.1002/(SICI)1520-6300(1999)11:4<437::AID-AJHB4>3.0.CO;2-K 10.1002/jor.1100170408 10.3109/03008207909152351 10.1055/s-2007-1021056 10.1016/0021-9290(87)90030-3 10.1002/art.1780230310 10.1111/j.0954-6820.1986.tb08945.x 10.1038/35015116 10.1097/00003086-199312000-00042 10.1016/j.jbmt.2008.04.038 10.2106/00004623-197759010-00004 10.1002/art.10462 10.1016/0012-1606(66)90022-4 10.1002/ar.1092260405 10.1016/j.mechmachtheory.2011.07.006 10.1016/S0021-9290(97)00120-6 10.1243/0954411041932791 10.1016/S0022-5193(88)80122-X 10.1002/jor.1100110413 10.1111/j.1469-7580.2006.00546.x 10.1016/S0268-0033(98)00091-6 10.1016/0021-9290(87)90026-1 10.1002/ar.a.20345 10.1159/000146418 10.1016/S0021-9290(98)00119-5 10.1115/1.3138397 10.1016/j.jbiomech.2009.04.024 10.1016/0021-9290(87)90027-3 10.1016/0021-9290(84)90003-4 10.1159/000146045 10.2746/0425164054223769 10.1046/j.1469-7580.1998.19340481.x 10.1080/03008200902846270 10.1002/ar.a.10001 10.1002/ar.1092260404 10.1109/IEMBS.1995.579667 10.1115/DETC2011-48244 10.1016/j.mehy.2010.02.021 10.1148/radiol.2341040041 10.1002/jor.1100130320 10.1097/00003086-198105000-00008 10.1096/fasebj.13.9001.s101 10.4028/www.scientific.net/AMM.162.266 10.1115/1.3426257 10.1359/jbmr.2001.16.5.918 10.1146/annurev.bioeng.8.061505.095721 10.1016/S0268-0033(99)00077-7 10.1136/ard.58.1.27 10.1016/S0021-9290(02)00276-2 10.1097/00003086-198105000-00007 10.1016/j.gaitpost.2004.05.002 10.1002/jor.1100100111 10.1016/0021-9290(95)00163-8 10.1002/art.23024 10.1177/00220345660450030801 10.3109/17453677808993232 10.1016/0021-9290(85)90204-0 10.1016/j.bone.2007.10.009 10.3109/17453678208992224 10.1002/jor.1100150416 10.1016/j.jbmt.2008.02.001 10.1146/annurev.bioeng.2.1.691 10.1177/0954411914550848 10.1177/0954411911406951 10.1016/S8756-3282(03)00083-8 10.1359/jbmr.1997.12.4.580 10.1002/jor.1100110109 10.1016/S0966-6362(96)01080-6 10.1002/jor.1100060604 10.1115/1.2798002 10.1136/ard.56.4.255 10.1007/BF01879454 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2015 |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO P64 |
DOI | 10.1016/j.jbiomech.2015.07.042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Research Library Prep Engineering Research Database MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 2967 |
ExternalDocumentID | 3823393201 26300403 10_1016_j_jbiomech_2015_07_042 S0021929015004388 1_s2_0_S0021929015004388 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO P64 |
ID | FETCH-LOGICAL-c690t-2a111a5ad63a9d6c26f5f5c3de607ebe369606d5a33ee1bdae65616ae6f4d6b23 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Sep 05 13:15:26 EDT 2025 Fri Sep 05 03:13:59 EDT 2025 Thu Sep 04 18:33:24 EDT 2025 Wed Aug 13 08:07:23 EDT 2025 Mon Jul 21 06:04:43 EDT 2025 Thu Jul 03 08:32:29 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Sun Feb 23 10:20:47 EST 2025 Tue Aug 26 17:10:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Joint kinmatics Subject-specific modeling Joint congruence Functional adaptation Human ankle |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c690t-2a111a5ad63a9d6c26f5f5c3de607ebe369606d5a33ee1bdae65616ae6f4d6b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://hdl.handle.net/11585/580526 |
PMID | 26300403 |
PQID | 1718119866 |
PQPubID | 1226346 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1837340777 proquest_miscellaneous_1778026542 proquest_miscellaneous_1718907237 proquest_journals_1718119866 pubmed_primary_26300403 crossref_primary_10_1016_j_jbiomech_2015_07_042 crossref_citationtrail_10_1016_j_jbiomech_2015_07_042 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2015_07_042 elsevier_clinicalkeyesjournals_1_s2_0_S0021929015004388 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2015_07_042 |
PublicationCentury | 2000 |
PublicationDate | 2015-09-18 |
PublicationDateYYYYMMDD | 2015-09-18 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Frost (bib36) 1999; 11 Fregly, Rahman, Banks (bib31) 2005; 127 Jang, Kim (bib50) 2008; 41 Wilson, O'Connor (bib109) 1997; 5 Roux, W., 1881. Der Zuchtende Kampf der Teile, oder die “Teilauslese” im Organismus (“Theorie der Funktionellen Anpassung”). Dekel, Weissman (bib24) 1978; 49 Huiskes, Weinans (bib47) 1987; 20 Sancisi, Parenti-Castelli (bib86) 2011; 46 Hsieh, Turner (bib44) 2001; 16 Palmoski, Colyer, Brandt (bib72) 1980; 23 Amiel, Woo (bib2) 1982; 53 Schriefer, Warden (bib91) 2005; 38 Huiskes, Ruimerman (bib48) 2000; 405 Chen, McCabe (bib17) 2000; 122 Wolff (bib111) 1986 Solomonow (bib116) 2009; 13 Feikes, O'Connor, Zavatsky (bib28) 2003; 36 Frost (bib35) 1990; 226 Jortikka, Inkinen (bib51) 1997; 56 Johnson (bib115) 1985 Burr, Martin (bib13) 1985; 18 Ingber (bib49) 2008; 12 Kaneko, Sasazaki (bib54) 2009; 50 Corazza, Stagni (bib23) 2005; 38 Wilson, Feikes, O'Connor (bib110) 1998; 31 Scherrer, Hillberry, Sickle (bib90) 1979; 101 Mosher, Smith (bib68) 2005; 234 Benjamin, Ralphs (bib6) 1998; 193 Burger, Klein-Nulend (bib12) 1999; 13 Eckstein, Hudelmaier, Putz (bib27) 2006; 208 Lanyon (bib58) 1987; 20 Leardini, O'Connor (bib60) 1999; 32 Shepherd, Seedhom (bib93) 1999; 58 Lanyon (bib57) 1980; 192 Wren, Beaupre, Carter (bib113) 1998; 31 Walsh, Frank (bib107) 1993; 297 Heegaard, Beaupre, Carter (bib43) 1999; 17 Perie, Hobatho (bib75) 1998; 13 Kura, Kitaoka (bib56) 1998; 13 Ronsky, J., Van den Bogert, A. et al., 1997. Application of magnetic resonance imaging for non-invasive quantification of joint contact surface areas. In: Proceedings of the IEEE 17th Annual Conference. Engineering in Medicine and Biology Society,1995, vol. 2, pp. 1253–1254. Carter, Beaupre (bib16) 2004; 427 Robling, Hinant (bib80) 2002; 17 Ramsey, Wretenberg (bib78) 1999; 14 Frost (bib32) 1990; 226 Franci, Parenti-Castelli, Belvedere, Leardini (bib29) 2009; 42 Judex, Gross, Zernicke (bib52) 1997; 12 Ottoboni, Sancisi (bib71) 2007; 40 Bullough (bib11) 1981; 156 Steinberg, Trueta (bib98) 1981; 156 Conconi, Parenti-Castelli (bib18) 2012; 162 van Oers, Ruimerman (bib103) 2008; 42 Frost (bib33) 1990; 226 Plochocki, Riscigno, Garcia (bib76) 2006; 288 Smith, Thomas (bib95) 1992; 10 Pauwels (bib74) 1980 Volkmann (bib106) 1862; 24 Sancisi, Zannoli (bib87) 2011; 225 Conconi, Parenti-Castelli (bib19) 2014; 228 Hueter (bib46) 1862; 25 Tipton, Vailas, Matthes (bib99) 1986; 711 Vogel, Ordog (bib105) 1993; 11 Leardini, Chiari (bib61) 2005; 21 Radin, Ehrlich (bib77) 1978; 131 Setton, Tohyama, Mow (bib92) 1998; 120 Conconi, M., Parenti-Castelli, V., 2012b. Sensitivity and stability analysis of a kinematic model for human joints (an application to human ankle). In: Proceedings of the XII International Symposium on 3D Analysis of Human Movement. Bologna, Italy, pp. 1–4. Frost (bib34) 1990; 226 Loitz, Zernicke (bib65) 1989 Turner, Owan, Takano (bib101) 1995; 269 Grodzinsky, Levenston (bib40) 2000; 2 Sancisi, N., Zannoli, D., Parenti Castelli, V., 2011a. A procedure to analyze and compare the sensitivity to geometrical parameter variations of one-dof mechanisms Bertram, Biewener (bib7) 1988; 131 Blackwood (bib8) 1966; 43 In: Proceedings of the ASME-IDETC/CIE, pp. 1–9. Wren, Beaupre, Carter (bib114) 2000; 37 Sirkett, Mullineux (bib94) 2004; 218 Fujie, Yamamoto (bib37) 2000; 15 Wong, Carter (bib112) 2003; 33 Gillard, Reilly (bib38) 1979; 7 Robling, Castillo, Turner (bib81) 2006; 8 Sancisi, Baldisserri, Parenti-Castelli, Belvedere, Leardini (bib88) 2014; 52 Leong, Hardin (bib63) 2011; 1240 Ateshian, Ark (bib5) 1995; 13 Brommer, Brama (bib10) 2005; 37 Adachi, Kameo, Hojo (bib1) 2010; 368 Giori, Beaupre, Carter (bib39) 1993; 11 Lanyon, Rubin (bib59) 1984; 17 Ruano-Gil, Nardi-Vilardaga, Teixidor-Johe (bib84) 1985; 123 Smith, Martin (bib96) 1997; 15 Paukkonen, Helminen (bib73) 1984; 35 Riggs, Lanyon, Boyde (bib79) 1993; 187 Carter (bib14) 1987; 20 Sokoloff (bib97) 1969 Neu, Khalafi (bib69) 2007; 56 Letechipia, Alessi (bib64) 2010; 75 Bouvier, Zimny (bib9) 1987; 129 McMaster, Weinert (bib67) 1970; 72 Hayashi (bib42) 1996; 29 Cooney, Chao (bib22) 1977; 59 Carter, Wong (bib15) 1988; 6 Ward, Pitsillidcs (bib108) 1998; 40 Franci, R., Parenti-Castelli,V., 2008. A one-degree-of-freedom spherical wrist for the modelling of passive motion of the human ankle joint. In: Proceedings of IAK 2008, Conference on Interdisciplinary Applications of Kinematics. Lima, Peru, pp. 1–13. Drachman, Sokoloff (bib25) 1966; 14 Grood, Suntay (bib41) 1983; 135 Vahdati, Rouhi (bib102) 2009; 36 O'Connor (bib70) 1997; 12 Hudelmaier, Glaser (bib45) 2003; 270 Vanwanseele, Eckstein (bib104) 2002; 46 Arokoski, Jurvelin (bib3) 1994; 15 Pauwels (10.1016/j.jbiomech.2015.07.042_bib74) 1980 van Oers (10.1016/j.jbiomech.2015.07.042_bib103) 2008; 42 Radin (10.1016/j.jbiomech.2015.07.042_bib77) 1978; 131 Solomonow (10.1016/j.jbiomech.2015.07.042_bib116) 2009; 13 Drachman (10.1016/j.jbiomech.2015.07.042_bib25) 1966; 14 Smith (10.1016/j.jbiomech.2015.07.042_bib96) 1997; 15 Lanyon (10.1016/j.jbiomech.2015.07.042_bib59) 1984; 17 Vanwanseele (10.1016/j.jbiomech.2015.07.042_bib104) 2002; 46 Carter (10.1016/j.jbiomech.2015.07.042_bib15) 1988; 6 Carter (10.1016/j.jbiomech.2015.07.042_bib14) 1987; 20 Carter (10.1016/j.jbiomech.2015.07.042_bib16) 2004; 427 Wolff (10.1016/j.jbiomech.2015.07.042_bib111) 1986 Neu (10.1016/j.jbiomech.2015.07.042_bib69) 2007; 56 Wilson (10.1016/j.jbiomech.2015.07.042_bib110) 1998; 31 Frost (10.1016/j.jbiomech.2015.07.042_bib35) 1990; 226 Smith (10.1016/j.jbiomech.2015.07.042_bib95) 1992; 10 Giori (10.1016/j.jbiomech.2015.07.042_bib39) 1993; 11 Leong (10.1016/j.jbiomech.2015.07.042_bib63) 2011; 1240 Mosher (10.1016/j.jbiomech.2015.07.042_bib68) 2005; 234 Hsieh (10.1016/j.jbiomech.2015.07.042_bib44) 2001; 16 Ottoboni (10.1016/j.jbiomech.2015.07.042_bib71) 2007; 40 Arokoski (10.1016/j.jbiomech.2015.07.042_bib3) 1994; 15 Frost (10.1016/j.jbiomech.2015.07.042_bib34) 1990; 226 Grood (10.1016/j.jbiomech.2015.07.042_bib41) 1983; 135 Steinberg (10.1016/j.jbiomech.2015.07.042_bib98) 1981; 156 Bullough (10.1016/j.jbiomech.2015.07.042_bib11) 1981; 156 Turner (10.1016/j.jbiomech.2015.07.042_bib101) 1995; 269 Riggs (10.1016/j.jbiomech.2015.07.042_bib79) 1993; 187 Leardini (10.1016/j.jbiomech.2015.07.042_bib60) 1999; 32 Scherrer (10.1016/j.jbiomech.2015.07.042_bib90) 1979; 101 Leardini (10.1016/j.jbiomech.2015.07.042_bib61) 2005; 21 Robling (10.1016/j.jbiomech.2015.07.042_bib80) 2002; 17 Huiskes (10.1016/j.jbiomech.2015.07.042_bib47) 1987; 20 Bouvier (10.1016/j.jbiomech.2015.07.042_bib9) 1987; 129 Cooney (10.1016/j.jbiomech.2015.07.042_bib22) 1977; 59 Loitz (10.1016/j.jbiomech.2015.07.042_bib65) 1989 Ruano-Gil (10.1016/j.jbiomech.2015.07.042_bib84) 1985; 123 Wren (10.1016/j.jbiomech.2015.07.042_bib113) 1998; 31 Dekel (10.1016/j.jbiomech.2015.07.042_bib24) 1978; 49 O'Connor (10.1016/j.jbiomech.2015.07.042_bib70) 1997; 12 Ingber (10.1016/j.jbiomech.2015.07.042_bib49) 2008; 12 Ateshian (10.1016/j.jbiomech.2015.07.042_bib5) 1995; 13 Gillard (10.1016/j.jbiomech.2015.07.042_bib38) 1979; 7 Schriefer (10.1016/j.jbiomech.2015.07.042_bib91) 2005; 38 Huiskes (10.1016/j.jbiomech.2015.07.042_bib48) 2000; 405 Frost (10.1016/j.jbiomech.2015.07.042_bib36) 1999; 11 Conconi (10.1016/j.jbiomech.2015.07.042_bib19) 2014; 228 Fregly (10.1016/j.jbiomech.2015.07.042_bib31) 2005; 127 Hudelmaier (10.1016/j.jbiomech.2015.07.042_bib45) 2003; 270 Robling (10.1016/j.jbiomech.2015.07.042_bib81) 2006; 8 Eckstein (10.1016/j.jbiomech.2015.07.042_bib27) 2006; 208 Judex (10.1016/j.jbiomech.2015.07.042_bib52) 1997; 12 Ramsey (10.1016/j.jbiomech.2015.07.042_bib78) 1999; 14 Conconi (10.1016/j.jbiomech.2015.07.042_bib18) 2012; 162 Hayashi (10.1016/j.jbiomech.2015.07.042_bib42) 1996; 29 Frost (10.1016/j.jbiomech.2015.07.042_bib33) 1990; 226 Lanyon (10.1016/j.jbiomech.2015.07.042_bib58) 1987; 20 Kura (10.1016/j.jbiomech.2015.07.042_bib56) 1998; 13 Vahdati (10.1016/j.jbiomech.2015.07.042_bib102) 2009; 36 10.1016/j.jbiomech.2015.07.042_bib20 Feikes (10.1016/j.jbiomech.2015.07.042_bib28) 2003; 36 Setton (10.1016/j.jbiomech.2015.07.042_bib92) 1998; 120 Benjamin (10.1016/j.jbiomech.2015.07.042_bib6) 1998; 193 Jortikka (10.1016/j.jbiomech.2015.07.042_bib51) 1997; 56 Jang (10.1016/j.jbiomech.2015.07.042_bib50) 2008; 41 McMaster (10.1016/j.jbiomech.2015.07.042_bib67) 1970; 72 Letechipia (10.1016/j.jbiomech.2015.07.042_bib64) 2010; 75 Fujie (10.1016/j.jbiomech.2015.07.042_bib37) 2000; 15 Sancisi (10.1016/j.jbiomech.2015.07.042_bib87) 2011; 225 Adachi (10.1016/j.jbiomech.2015.07.042_bib1) 2010; 368 10.1016/j.jbiomech.2015.07.042_bib30 Tipton (10.1016/j.jbiomech.2015.07.042_bib99) 1986; 711 Grodzinsky (10.1016/j.jbiomech.2015.07.042_bib40) 2000; 2 Hueter (10.1016/j.jbiomech.2015.07.042_bib46) 1862; 25 Lanyon (10.1016/j.jbiomech.2015.07.042_bib57) 1980; 192 Bertram (10.1016/j.jbiomech.2015.07.042_bib7) 1988; 131 10.1016/j.jbiomech.2015.07.042_bib82 10.1016/j.jbiomech.2015.07.042_bib83 Sancisi (10.1016/j.jbiomech.2015.07.042_bib86) 2011; 46 Kaneko (10.1016/j.jbiomech.2015.07.042_bib54) 2009; 50 Johnson (10.1016/j.jbiomech.2015.07.042_bib115) 1985 10.1016/j.jbiomech.2015.07.042_bib89 Volkmann (10.1016/j.jbiomech.2015.07.042_bib106) 1862; 24 Wong (10.1016/j.jbiomech.2015.07.042_bib112) 2003; 33 Paukkonen (10.1016/j.jbiomech.2015.07.042_bib73) 1984; 35 Perie (10.1016/j.jbiomech.2015.07.042_bib75) 1998; 13 Frost (10.1016/j.jbiomech.2015.07.042_bib32) 1990; 226 Sirkett (10.1016/j.jbiomech.2015.07.042_bib94) 2004; 218 Palmoski (10.1016/j.jbiomech.2015.07.042_bib72) 1980; 23 Chen (10.1016/j.jbiomech.2015.07.042_bib17) 2000; 122 Shepherd (10.1016/j.jbiomech.2015.07.042_bib93) 1999; 58 Wilson (10.1016/j.jbiomech.2015.07.042_bib109) 1997; 5 Burr (10.1016/j.jbiomech.2015.07.042_bib13) 1985; 18 Plochocki (10.1016/j.jbiomech.2015.07.042_bib76) 2006; 288 Brommer (10.1016/j.jbiomech.2015.07.042_bib10) 2005; 37 Vogel (10.1016/j.jbiomech.2015.07.042_bib105) 1993; 11 Amiel (10.1016/j.jbiomech.2015.07.042_bib2) 1982; 53 Corazza (10.1016/j.jbiomech.2015.07.042_bib23) 2005; 38 Walsh (10.1016/j.jbiomech.2015.07.042_bib107) 1993; 297 Heegaard (10.1016/j.jbiomech.2015.07.042_bib43) 1999; 17 Blackwood (10.1016/j.jbiomech.2015.07.042_bib8) 1966; 43 Burger (10.1016/j.jbiomech.2015.07.042_bib12) 1999; 13 Ward (10.1016/j.jbiomech.2015.07.042_bib108) 1998; 40 Wren (10.1016/j.jbiomech.2015.07.042_bib114) 2000; 37 Sancisi (10.1016/j.jbiomech.2015.07.042_bib88) 2014; 52 Franci (10.1016/j.jbiomech.2015.07.042_bib29) 2009; 42 Sokoloff (10.1016/j.jbiomech.2015.07.042_bib97) 1969 |
References_xml | – volume: 40 start-page: 199 year: 1998 ident: bib108 article-title: Developmental immobilization induces failure of joint cavity formation by a process involving selective local changes in glycosaminoglycan synthesis publication-title: Trans. Orthop. Res. Soc. – volume: 14 start-page: 401 year: 1966 end-page: 420 ident: bib25 article-title: The role of movement in embryonic joint development publication-title: Dev. Biol. – reference: Franci, R., Parenti-Castelli,V., 2008. A one-degree-of-freedom spherical wrist for the modelling of passive motion of the human ankle joint. In: Proceedings of IAK 2008, Conference on Interdisciplinary Applications of Kinematics. Lima, Peru, pp. 1–13. – volume: 25 start-page: 572 year: 1862 end-page: 599 ident: bib46 article-title: Anatomische studien an den extremititengclenken neugeborener und erwachsener publication-title: Virchows Arch. A Pathol. Anat. Histopathol. – volume: 20 start-page: 1135 year: 1987 end-page: 1150 ident: bib47 article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis publication-title: J. Biomech. – volume: 12 start-page: 198 year: 2008 end-page: 200 ident: bib49 article-title: Tensegrity and mechanotransduction publication-title: J. Bodyw. Mov. Ther. – volume: 12 start-page: 1737 year: 1997 end-page: 1745 ident: bib52 article-title: Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton publication-title: J. Bone Miner. Res. – volume: 8 start-page: 455 year: 2006 end-page: 498 ident: bib81 article-title: Biomechanical and molecular regulation of bone remodeling publication-title: Annum Revm Biomedm Eng. – volume: 38 start-page: 1838 year: 2005 end-page: 1845 ident: bib91 article-title: Cellular accommodation and the response of bone to mechanical loading publication-title: J. Biomech. – year: 1986 ident: bib111 article-title: The Law of Bone Remodelling – volume: 208 start-page: 491 year: 2006 end-page: 512 ident: bib27 article-title: The effects of exercise on human articular cartilage publication-title: J. Anat. – reference: Ronsky, J., Van den Bogert, A. et al., 1997. Application of magnetic resonance imaging for non-invasive quantification of joint contact surface areas. In: Proceedings of the IEEE 17th Annual Conference. Engineering in Medicine and Biology Society,1995, vol. 2, pp. 1253–1254. – volume: 24 start-page: 512 year: 1862 end-page: 540 ident: bib106 article-title: Chirurgische erfahrungen uber knochenverbiegungen und knochenwachsthum publication-title: Virchows Arch. A Pathol. Anat. Histopathol. – volume: 17 start-page: 897 year: 1984 end-page: 905 ident: bib59 article-title: Static vs dynamic loads as an influence on bone remodelling publication-title: J. Biomech. – volume: 15 start-page: 593 year: 1997 end-page: 600 ident: bib96 article-title: Surface remodeling of trabecular bone using a tissue level model publication-title: J. Orthop. Res. – volume: 11 start-page: 581 year: 1993 end-page: 591 ident: bib39 article-title: Cellular shape and pressure may mediate mechanical control of tissue composition in tendons publication-title: J. Orthop. Res. – volume: 193 start-page: 481 year: 1998 end-page: 494 ident: bib6 article-title: Fibrocartilage in tendons and ligaments – an adaptation to compressive load publication-title: J. Anat. – volume: 6 start-page: 804 year: 1988 end-page: 816 ident: bib15 article-title: The role of mechanical loading histories in the development of diarthrodial joints publication-title: J. Orthop. Res. – volume: 16 start-page: 918 year: 2001 end-page: 924 ident: bib44 article-title: Effects of loading frequency on mechanically induced bone formation publication-title: J. Bone Miner. Res. – volume: 29 start-page: 707 year: 1996 end-page: 716 ident: bib42 article-title: Biomechanical studies of the remodeling of knee joint tendons and ligaments publication-title: J. Biomech. – volume: 41 start-page: 2353 year: 2008 end-page: 2361 ident: bib50 article-title: Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization publication-title: J. Biomech. – volume: 218 start-page: 349 year: 2004 end-page: 359 ident: bib94 article-title: A kinematic model of the wrist based on maximization of joint contact area publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med. – volume: 42 start-page: 250 year: 2008 end-page: 259 ident: bib103 article-title: A unified theory for osteonal and hemi-osteonal remodeling publication-title: Bone – volume: 120 start-page: 355 year: 1998 end-page: 361 ident: bib92 article-title: Swelling and curling behaviors of articular cartilage publication-title: J. Biomech. Eng. – volume: 56 start-page: 3706 year: 2007 end-page: 3714 ident: bib69 article-title: Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling publication-title: Arthritis Rheum. – reference: In: Proceedings of the ASME-IDETC/CIE, pp. 1–9. – volume: 427 start-page: 69 year: 2004 end-page: 77 ident: bib16 article-title: The mechanobiology of articular cartilage development and degeneration publication-title: Clin. Orthop. Relat. Res. – year: 1980 ident: bib74 article-title: Biomechanics of the Locomotor Apparatus – volume: 13 start-page: 136 year: 2009 end-page: 154 ident: bib116 article-title: Ligaments: a source of musculoskeletal disorders publication-title: J. Bodyw. Mov. Ther. – volume: 123 start-page: 90 year: 1985 end-page: 92 ident: bib84 article-title: Embryonal hypermobility and articular development publication-title: Acta Anat. – volume: 36 start-page: 125 year: 2003 end-page: 129 ident: bib28 article-title: A constraint-based approach to modelling the mobility of the human knee joint publication-title: J. Biomech. – volume: 187 start-page: 231 year: 1993 end-page: 238 ident: bib79 article-title: Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius publication-title: Anat. Embryol. – volume: 11 start-page: 68 year: 1993 end-page: 77 ident: bib105 article-title: Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments publication-title: J. Orthop. Res. – volume: 156 start-page: 61 year: 1981 end-page: 66 ident: bib11 article-title: The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis publication-title: Clin. Orthop. Relat. Res. – volume: 12 start-page: 580 year: 1997 end-page: 589 ident: bib70 article-title: Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats publication-title: J. Bone Miner. Res. – year: 1969 ident: bib97 article-title: The Biology of Degenerative Joint Disease – volume: 35 start-page: 293 year: 1984 end-page: 304 ident: bib73 article-title: Quantitative morphological and biochemical investigations on the effects of physical exercise and immobilization on the articular cartilage of young rabbits publication-title: Acta. Biol. Hung. – volume: 135 start-page: 136 year: 1983 end-page: 144 ident: bib41 article-title: A joint coordinate systenf for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. – volume: 31 start-page: 107 year: 1998 end-page: 114 ident: bib113 article-title: A model for loading-dependent growth, development, and adaptation of tendons and ligaments publication-title: J. Biomech. – volume: 59 start-page: 27 year: 1977 end-page: 36 ident: bib22 article-title: Biomechanical analysis of static forces in the thumb during hand function publication-title: J. Bone Jt. Surg. Am. – volume: 288 start-page: 776 year: 2006 end-page: 781 ident: bib76 article-title: Functional adaptation of the femoral head to voluntary exercise publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. – volume: 122 start-page: 465 year: 2000 end-page: 470 ident: bib17 article-title: Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and pH dependent publication-title: J. Biomech. Eng. – volume: 270 start-page: 175 year: 2003 end-page: 184 ident: bib45 article-title: Correlation of knee-joint cartilage morphology with muscle cross-sectional areas vs. anthropometric variables publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. – volume: 36 start-page: 284 year: 2009 end-page: 293 ident: bib102 article-title: A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse publication-title: Mech. Res. Commun. – volume: 37 start-page: 217 year: 2000 end-page: 224 ident: bib114 article-title: Tendon and ligament adaptation to exercise, immobilization, and remobilization publication-title: J. Rehabil. Res. Dev. – volume: 17 start-page: 509 year: 1999 end-page: 517 ident: bib43 article-title: Mechanically modulated cartilage growth may regulate joint surface morphogenesis publication-title: J. Orthop. Res. – volume: 269 start-page: E438 year: 1995 end-page: E442 ident: bib101 article-title: Mechanotransduction in bone: role of strain rate publication-title: Am. J. Physiol. – volume: 297 start-page: 253 year: 1993 end-page: 261 ident: bib107 article-title: Knee immobilization inhibits biomechanical maturation of the rabbit medial collateral ligament publication-title: Clin. Orthop. Relat. Res. – volume: 234 start-page: 245 year: 2005 end-page: 249 ident: bib68 article-title: Change in knee cartilage T2 at MR imaging after running: a feasibility study publication-title: Radiology – volume: 226 start-page: 403 year: 1990 end-page: 413 ident: bib32 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 1. redefining Wolff's law: the bone modeling problem publication-title: Anat. Rec. – volume: 226 start-page: 423 year: 1990 end-page: 432 ident: bib34 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 3. the hyaline cartilage modeling problem publication-title: Anat. Rec. – start-page: 265 year: 1989 end-page: 271 ident: bib65 article-title: Effects of short-term immobilization versus continuous passive motion on the biomechanical and biochemical properties of the rabbit tendon publication-title: Clin. Orthop. Relat. Res. – volume: 20 start-page: 1083 year: 1987 end-page: 1093 ident: bib58 article-title: Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling publication-title: J. Biomech. – volume: 46 start-page: 1920 year: 2011 end-page: 1928 ident: bib86 article-title: A sequentially-defined stiffness model of the knee publication-title: Mech. Mach. Theory – volume: 53 start-page: 325 year: 1982 end-page: 332 ident: bib2 article-title: The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation publication-title: Acta Orthop. Scand. – reference: Sancisi, N., Zannoli, D., Parenti Castelli, V., 2011a. A procedure to analyze and compare the sensitivity to geometrical parameter variations of one-dof mechanisms – volume: 32 start-page: 111 year: 1999 end-page: 118 ident: bib60 article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system publication-title: J. Biomech. – volume: 228 start-page: 935 year: 2014 end-page: 941 ident: bib19 article-title: A sound and efficient measure of joint congruence publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med. – volume: 13 start-page: S101 year: 1999 end-page: S112 ident: bib12 article-title: Mechanotransduction in bone-role of the lacuno-canalicular network publication-title: FASEB J. – volume: 13 start-page: 394 year: 1998 end-page: 402 ident: bib75 article-title: In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis publication-title: Clin. Biomech. – volume: 33 start-page: 1 year: 2003 end-page: 13 ident: bib112 article-title: Aticular cartilage functional histomorphology and mechanobiology: a research perspective publication-title: Bone – volume: 15 start-page: 370 year: 2000 end-page: 378 ident: bib37 article-title: Effects of growth on the response of the rabbit patellar tendon to stress shielding: a biomechanical study publication-title: Clin. Biomech. – volume: 10 start-page: 88 year: 1992 end-page: 95 ident: bib95 article-title: Rabbit knee immobilization: bone remodeling precedes cartilage degradation publication-title: J. Orthop. Res. – volume: 127 start-page: 692 year: 2005 end-page: 699 ident: bib31 article-title: Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy publication-title: J. Biomech. Eng. – volume: 15 start-page: 254 year: 1994 end-page: 260 ident: bib3 article-title: Softening of the lateral condyle articular cartilage in the canine knee joint after long distance (up to 40 publication-title: Int. J. Sports Med. – volume: 56 start-page: 255 year: 1997 end-page: 261 ident: bib51 article-title: Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage publication-title: Ann. Rheum. Dis. – volume: 5 start-page: 108 year: 1997 end-page: 115 ident: bib109 article-title: A three-dimensional geometric model of the knee for the study of joint forces in gait publication-title: Gait Posture – volume: 101 start-page: 271 year: 1979 end-page: 278 ident: bib90 article-title: Determining the in-vivo areas of contact in the canine shoulder publication-title: J. Biomech. Eng. – volume: 58 start-page: 27 year: 1999 end-page: 34 ident: bib93 article-title: Thickness of human articular cartilage in joints of the lower limb publication-title: Ann. Rheum. Dis. – volume: 20 start-page: 1095 year: 1987 end-page: 1109 ident: bib14 article-title: Mechanical loading history and skeletal biology publication-title: J. Biomech. – volume: 14 start-page: 595 year: 1999 end-page: 611 ident: bib78 article-title: Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint publication-title: Clinm Biomechm – volume: 52 start-page: 363 year: 2014 end-page: 373 ident: bib88 article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint publication-title: Med. Biol. Eng. Comput. – volume: 50 start-page: 263 year: 2009 end-page: 269 ident: bib54 article-title: Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro publication-title: Connect. Tissue Res. – volume: 162 start-page: 266 year: 2012 end-page: 275 ident: bib18 article-title: Joint kinematics from functional adaptation: an application to the human ankle publication-title: Appl. Mech. Mater. – volume: 225 start-page: 725 year: 2011 end-page: 735 ident: bib87 article-title: A one degree-of-freedom spherical mechanism model of the human knee joint publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med. – volume: 368 start-page: 2669 year: 2010 end-page: 2682 ident: bib1 article-title: Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 43 start-page: 480 year: 1966 end-page: 489 ident: bib8 article-title: Cellular remodeling in articular tissue publication-title: J. Dent. Res. – volume: 405 start-page: 704 year: 2000 end-page: 706 ident: bib48 article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone publication-title: Nature – volume: 17 start-page: 1545 year: 2002 end-page: 1554 ident: bib80 article-title: Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts publication-title: J. Bone Miner. Res. – volume: 21 start-page: 212 year: 2005 end-page: 225 ident: bib61 article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation publication-title: Gait Posture – volume: 2 start-page: 691 year: 2000 end-page: 713 ident: bib40 article-title: Cartilage tissue remodeling in response to mechanical forces publication-title: Annu. Rev. Biomed. Eng. – volume: 42 start-page: 1403 year: 2009 end-page: 1408 ident: bib29 article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint publication-title: J. Biomech. – volume: 1240 start-page: 32 year: 2011 end-page: 37 ident: bib63 article-title: Mechanotransduction and cartilage integrity publication-title: Ann. N. Y. Acad. Sci. – volume: 156 start-page: 52 year: 1981 end-page: 60 ident: bib98 article-title: Effects of activity on bone growth and development in the rat publication-title: Clin. Orthop. Relat. Res. – volume: 72 start-page: 308 year: 1970 end-page: 314 ident: bib67 article-title: Effects of mechanical forces on growing cartilage publication-title: Clin. Orthop. Relat. Res. – volume: 226 start-page: 433 year: 1990 end-page: 439 ident: bib35 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 4. mechanical influences on intact fibrous tissues publication-title: Anat. Rec. – volume: 23 start-page: 325 year: 1980 end-page: 334 ident: bib72 article-title: Joint motion in the absence of normal loading does not maintain normal articular cartilage publication-title: Arthritis Rheum. – volume: 13 start-page: 365 year: 1998 end-page: 370 ident: bib56 article-title: Measurement of surface contact area of the ankle joint publication-title: Clin. Biomech. – volume: 131 start-page: 288 year: 1978 end-page: 293 ident: bib77 article-title: Effect of repetitive impulsive loading on the knee joints of rabbits publication-title: Clin. Orthop. Relat. Res. – volume: 49 start-page: 519 year: 1978 end-page: 528 ident: bib24 article-title: Joint changes after overuse and peak overloading of rabbit knees in vivo publication-title: Acta Orthop. Scand. – reference: Conconi, M., Parenti-Castelli, V., 2012b. Sensitivity and stability analysis of a kinematic model for human joints (an application to human ankle). In: Proceedings of the XII International Symposium on 3D Analysis of Human Movement. Bologna, Italy, pp. 1–4. – volume: 11 start-page: 437 year: 1999 end-page: 455 ident: bib36 article-title: An approach to estimating bone and joint loads and muscle strength in living subjects and skeletal remains publication-title: Am. J. Hum. Biol. – volume: 38 start-page: 1205 year: 2005 end-page: 1212 ident: bib23 article-title: Articular contact at the tibiotalar joint in passive flexion publication-title: J. Biomech. – volume: 40 start-page: S144 year: 2007 ident: bib71 article-title: Equivalent spatial mechanisms for modelling passive motion of the human knee publication-title: J. Biomech. – year: 1985 ident: bib115 article-title: Contact mechanics – volume: 192 start-page: 457 year: 1980 end-page: 466 ident: bib57 article-title: The influence of function on the development of bone curvature. An experimental study on the rat tibia publication-title: J. Zool. – volume: 711 start-page: 157 year: 1986 end-page: 168 ident: bib99 article-title: Experimental studies on the influences of physical activity on ligaments, tendons and joints: a brief review publication-title: Acta Med. Scand. – volume: 37 start-page: 148 year: 2005 end-page: 154 ident: bib10 article-title: Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis publication-title: Equine Vet. J. – volume: 13 start-page: 450 year: 1995 end-page: 458 ident: bib5 article-title: Contact areas in the thumb carpometacarpal joint publication-title: J. Orthop. Res. – volume: 131 start-page: 75 year: 1988 end-page: 92 ident: bib7 article-title: Bone curvature: sacrificing strength for load predictability? publication-title: J. Theor. Biol. – volume: 7 start-page: 37 year: 1979 end-page: 46 ident: bib38 article-title: The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon publication-title: Connect. Tissue Res. – volume: 31 start-page: 1127 year: 1998 end-page: 1136 ident: bib110 article-title: Ligaments and articular contact guide passive knee flexion publication-title: J. Biomech – volume: 18 start-page: 189 year: 1985 end-page: 200 ident: bib13 article-title: Bone remodeling in response to in vivo fatigue microdamage publication-title: J. Biomech. – volume: 226 start-page: 414 year: 1990 end-page: 422 ident: bib33 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 2. redefining Wolff's law: the remodeling problem publication-title: Anat. Rec. – volume: 46 start-page: 2073 year: 2002 end-page: 2078 ident: bib104 article-title: Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement publication-title: Arthritis Rheum. – volume: 75 start-page: 196 year: 2010 end-page: 198 ident: bib64 article-title: Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling? publication-title: Med. Hypotheses – volume: 129 start-page: 293 year: 1987 end-page: 300 ident: bib9 article-title: Effects of mechanical loading on surface morphology of the condylar cartilage of the mandible in rats publication-title: Acta Anat. – reference: Roux, W., 1881. Der Zuchtende Kampf der Teile, oder die “Teilauslese” im Organismus (“Theorie der Funktionellen Anpassung”). – volume: 41 start-page: 2353 year: 2008 ident: 10.1016/j.jbiomech.2015.07.042_bib50 article-title: Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.05.037 – volume: 17 start-page: 1545 year: 2002 ident: 10.1016/j.jbiomech.2015.07.042_bib80 article-title: Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.8.1545 – volume: 38 start-page: 1838 year: 2005 ident: 10.1016/j.jbiomech.2015.07.042_bib91 article-title: Cellular accommodation and the response of bone to mechanical loading publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.08.017 – volume: 40 start-page: 199 year: 1998 ident: 10.1016/j.jbiomech.2015.07.042_bib108 article-title: Developmental immobilization induces failure of joint cavity formation by a process involving selective local changes in glycosaminoglycan synthesis publication-title: Trans. Orthop. Res. Soc. – volume: 38 start-page: 1205 year: 2005 ident: 10.1016/j.jbiomech.2015.07.042_bib23 article-title: Articular contact at the tibiotalar joint in passive flexion publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.06.019 – volume: 52 start-page: 363 issue: 4 year: 2014 ident: 10.1016/j.jbiomech.2015.07.042_bib88 article-title: One-degree-of-freedom spherical model for the passive motion of the human ankle joint publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1137-y – volume: 32 start-page: 111 year: 1999 ident: 10.1016/j.jbiomech.2015.07.042_bib60 article-title: Kinematics of the human ankle complex in passive flexion; a single degree of freedom system publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00157-2 – volume: 226 start-page: 414 year: 1990 ident: 10.1016/j.jbiomech.2015.07.042_bib33 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 2. redefining Wolff's law: the remodeling problem publication-title: Anat. Rec. doi: 10.1002/ar.1092260403 – volume: 14 start-page: 595 year: 1999 ident: 10.1016/j.jbiomech.2015.07.042_bib78 article-title: Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint publication-title: Clinm Biomechm doi: 10.1016/S0268-0033(99)00015-7 – volume: 36 start-page: 284 year: 2009 ident: 10.1016/j.jbiomech.2015.07.042_bib102 article-title: A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2008.10.004 – volume: 427 start-page: 69 year: 2004 ident: 10.1016/j.jbiomech.2015.07.042_bib16 article-title: The mechanobiology of articular cartilage development and degeneration publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/01.blo.0000144970.05107.7e – volume: 12 start-page: 1737 year: 1997 ident: 10.1016/j.jbiomech.2015.07.042_bib52 article-title: Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.1997.12.10.1737 – volume: 25 start-page: 572 year: 1862 ident: 10.1016/j.jbiomech.2015.07.042_bib46 article-title: Anatomische studien an den extremititengclenken neugeborener und erwachsener publication-title: Virchows Arch. A Pathol. Anat. Histopathol. doi: 10.1007/BF01879806 – volume: 127 start-page: 692 year: 2005 ident: 10.1016/j.jbiomech.2015.07.042_bib31 article-title: Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy publication-title: J. Biomech. Eng. doi: 10.1115/1.1933949 – volume: 13 start-page: 365 year: 1998 ident: 10.1016/j.jbiomech.2015.07.042_bib56 article-title: Measurement of surface contact area of the ankle joint publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(98)00011-4 – volume: 1240 start-page: 32 year: 2011 ident: 10.1016/j.jbiomech.2015.07.042_bib63 article-title: Mechanotransduction and cartilage integrity publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2011.06301.x – ident: 10.1016/j.jbiomech.2015.07.042_bib83 – volume: 226 start-page: 403 year: 1990 ident: 10.1016/j.jbiomech.2015.07.042_bib32 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 1. redefining Wolff's law: the bone modeling problem publication-title: Anat. Rec. doi: 10.1002/ar.1092260402 – volume: 368 start-page: 2669 year: 2010 ident: 10.1016/j.jbiomech.2015.07.042_bib1 article-title: Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress publication-title: Philos. Trans. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2010.0073 – volume: 122 start-page: 465 year: 2000 ident: 10.1016/j.jbiomech.2015.07.042_bib17 article-title: Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and pH dependent publication-title: J. Biomech. Eng. doi: 10.1115/1.1289639 – volume: 192 start-page: 457 year: 1980 ident: 10.1016/j.jbiomech.2015.07.042_bib57 article-title: The influence of function on the development of bone curvature. An experimental study on the rat tibia publication-title: J. Zool. doi: 10.1111/j.1469-7998.1980.tb04243.x – year: 1986 ident: 10.1016/j.jbiomech.2015.07.042_bib111 – volume: 40 start-page: S144 year: 2007 ident: 10.1016/j.jbiomech.2015.07.042_bib71 article-title: Equivalent spatial mechanisms for modelling passive motion of the human knee publication-title: J. Biomech. doi: 10.1016/S0021-9290(07)70140-9 – volume: 11 start-page: 437 year: 1999 ident: 10.1016/j.jbiomech.2015.07.042_bib36 article-title: An approach to estimating bone and joint loads and muscle strength in living subjects and skeletal remains publication-title: Am. J. Hum. Biol. doi: 10.1002/(SICI)1520-6300(1999)11:4<437::AID-AJHB4>3.0.CO;2-K – volume: 17 start-page: 509 year: 1999 ident: 10.1016/j.jbiomech.2015.07.042_bib43 article-title: Mechanically modulated cartilage growth may regulate joint surface morphogenesis publication-title: J. Orthop. Res. doi: 10.1002/jor.1100170408 – volume: 7 start-page: 37 year: 1979 ident: 10.1016/j.jbiomech.2015.07.042_bib38 article-title: The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon publication-title: Connect. Tissue Res. doi: 10.3109/03008207909152351 – volume: 15 start-page: 254 year: 1994 ident: 10.1016/j.jbiomech.2015.07.042_bib3 article-title: Softening of the lateral condyle articular cartilage in the canine knee joint after long distance (up to 40km/day) running training lasting one year publication-title: Int. J. Sports Med. doi: 10.1055/s-2007-1021056 – volume: 20 start-page: 1135 year: 1987 ident: 10.1016/j.jbiomech.2015.07.042_bib47 article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90030-3 – volume: 23 start-page: 325 year: 1980 ident: 10.1016/j.jbiomech.2015.07.042_bib72 article-title: Joint motion in the absence of normal loading does not maintain normal articular cartilage publication-title: Arthritis Rheum. doi: 10.1002/art.1780230310 – volume: 711 start-page: 157 year: 1986 ident: 10.1016/j.jbiomech.2015.07.042_bib99 article-title: Experimental studies on the influences of physical activity on ligaments, tendons and joints: a brief review publication-title: Acta Med. Scand. doi: 10.1111/j.0954-6820.1986.tb08945.x – volume: 405 start-page: 704 year: 2000 ident: 10.1016/j.jbiomech.2015.07.042_bib48 article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone publication-title: Nature doi: 10.1038/35015116 – ident: 10.1016/j.jbiomech.2015.07.042_bib30 – volume: 297 start-page: 253 year: 1993 ident: 10.1016/j.jbiomech.2015.07.042_bib107 article-title: Knee immobilization inhibits biomechanical maturation of the rabbit medial collateral ligament publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-199312000-00042 – year: 1985 ident: 10.1016/j.jbiomech.2015.07.042_bib115 – volume: 12 start-page: 198 year: 2008 ident: 10.1016/j.jbiomech.2015.07.042_bib49 article-title: Tensegrity and mechanotransduction publication-title: J. Bodyw. Mov. Ther. doi: 10.1016/j.jbmt.2008.04.038 – volume: 59 start-page: 27 year: 1977 ident: 10.1016/j.jbiomech.2015.07.042_bib22 article-title: Biomechanical analysis of static forces in the thumb during hand function publication-title: J. Bone Jt. Surg. Am. doi: 10.2106/00004623-197759010-00004 – volume: 37 start-page: 217 year: 2000 ident: 10.1016/j.jbiomech.2015.07.042_bib114 article-title: Tendon and ligament adaptation to exercise, immobilization, and remobilization publication-title: J. Rehabil. Res. Dev. – volume: 46 start-page: 2073 year: 2002 ident: 10.1016/j.jbiomech.2015.07.042_bib104 article-title: Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement publication-title: Arthritis Rheum. doi: 10.1002/art.10462 – volume: 14 start-page: 401 year: 1966 ident: 10.1016/j.jbiomech.2015.07.042_bib25 article-title: The role of movement in embryonic joint development publication-title: Dev. Biol. doi: 10.1016/0012-1606(66)90022-4 – volume: 226 start-page: 433 year: 1990 ident: 10.1016/j.jbiomech.2015.07.042_bib35 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 4. mechanical influences on intact fibrous tissues publication-title: Anat. Rec. doi: 10.1002/ar.1092260405 – volume: 46 start-page: 1920 year: 2011 ident: 10.1016/j.jbiomech.2015.07.042_bib86 article-title: A sequentially-defined stiffness model of the knee publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2011.07.006 – start-page: 265 year: 1989 ident: 10.1016/j.jbiomech.2015.07.042_bib65 article-title: Effects of short-term immobilization versus continuous passive motion on the biomechanical and biochemical properties of the rabbit tendon publication-title: Clin. Orthop. Relat. Res. – volume: 31 start-page: 107 year: 1998 ident: 10.1016/j.jbiomech.2015.07.042_bib113 article-title: A model for loading-dependent growth, development, and adaptation of tendons and ligaments publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)00120-6 – volume: 218 start-page: 349 year: 2004 ident: 10.1016/j.jbiomech.2015.07.042_bib94 article-title: A kinematic model of the wrist based on maximization of joint contact area publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med. doi: 10.1243/0954411041932791 – volume: 131 start-page: 75 year: 1988 ident: 10.1016/j.jbiomech.2015.07.042_bib7 article-title: Bone curvature: sacrificing strength for load predictability? publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(88)80122-X – volume: 11 start-page: 581 year: 1993 ident: 10.1016/j.jbiomech.2015.07.042_bib39 article-title: Cellular shape and pressure may mediate mechanical control of tissue composition in tendons publication-title: J. Orthop. Res. doi: 10.1002/jor.1100110413 – volume: 208 start-page: 491 year: 2006 ident: 10.1016/j.jbiomech.2015.07.042_bib27 article-title: The effects of exercise on human articular cartilage publication-title: J. Anat. doi: 10.1111/j.1469-7580.2006.00546.x – year: 1969 ident: 10.1016/j.jbiomech.2015.07.042_bib97 – volume: 13 start-page: 394 year: 1998 ident: 10.1016/j.jbiomech.2015.07.042_bib75 article-title: In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(98)00091-6 – volume: 20 start-page: 1083 year: 1987 ident: 10.1016/j.jbiomech.2015.07.042_bib58 article-title: Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90026-1 – volume: 288 start-page: 776 year: 2006 ident: 10.1016/j.jbiomech.2015.07.042_bib76 article-title: Functional adaptation of the femoral head to voluntary exercise publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. doi: 10.1002/ar.a.20345 – volume: 129 start-page: 293 year: 1987 ident: 10.1016/j.jbiomech.2015.07.042_bib9 article-title: Effects of mechanical loading on surface morphology of the condylar cartilage of the mandible in rats publication-title: Acta Anat. doi: 10.1159/000146418 – volume: 31 start-page: 1127 year: 1998 ident: 10.1016/j.jbiomech.2015.07.042_bib110 article-title: Ligaments and articular contact guide passive knee flexion publication-title: J. Biomech doi: 10.1016/S0021-9290(98)00119-5 – volume: 135 start-page: 136 year: 1983 ident: 10.1016/j.jbiomech.2015.07.042_bib41 article-title: A joint coordinate systenf for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. doi: 10.1115/1.3138397 – volume: 42 start-page: 1403 issue: 10 year: 2009 ident: 10.1016/j.jbiomech.2015.07.042_bib29 article-title: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.04.024 – volume: 20 start-page: 1095 year: 1987 ident: 10.1016/j.jbiomech.2015.07.042_bib14 article-title: Mechanical loading history and skeletal biology publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90027-3 – volume: 17 start-page: 897 year: 1984 ident: 10.1016/j.jbiomech.2015.07.042_bib59 article-title: Static vs dynamic loads as an influence on bone remodelling publication-title: J. Biomech. doi: 10.1016/0021-9290(84)90003-4 – volume: 123 start-page: 90 year: 1985 ident: 10.1016/j.jbiomech.2015.07.042_bib84 article-title: Embryonal hypermobility and articular development publication-title: Acta Anat. doi: 10.1159/000146045 – volume: 37 start-page: 148 year: 2005 ident: 10.1016/j.jbiomech.2015.07.042_bib10 article-title: Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis publication-title: Equine Vet. J. doi: 10.2746/0425164054223769 – volume: 193 start-page: 481 year: 1998 ident: 10.1016/j.jbiomech.2015.07.042_bib6 article-title: Fibrocartilage in tendons and ligaments – an adaptation to compressive load publication-title: J. Anat. doi: 10.1046/j.1469-7580.1998.19340481.x – volume: 50 start-page: 263 year: 2009 ident: 10.1016/j.jbiomech.2015.07.042_bib54 article-title: Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro publication-title: Connect. Tissue Res. doi: 10.1080/03008200902846270 – ident: 10.1016/j.jbiomech.2015.07.042_bib20 – volume: 270 start-page: 175 year: 2003 ident: 10.1016/j.jbiomech.2015.07.042_bib45 article-title: Correlation of knee-joint cartilage morphology with muscle cross-sectional areas vs. anthropometric variables publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. doi: 10.1002/ar.a.10001 – volume: 226 start-page: 423 year: 1990 ident: 10.1016/j.jbiomech.2015.07.042_bib34 article-title: Skeletal structural adaptations to mechanical usage (SATMU): 3. the hyaline cartilage modeling problem publication-title: Anat. Rec. doi: 10.1002/ar.1092260404 – ident: 10.1016/j.jbiomech.2015.07.042_bib82 doi: 10.1109/IEMBS.1995.579667 – ident: 10.1016/j.jbiomech.2015.07.042_bib89 doi: 10.1115/DETC2011-48244 – volume: 75 start-page: 196 year: 2010 ident: 10.1016/j.jbiomech.2015.07.042_bib64 article-title: Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling? publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2010.02.021 – volume: 234 start-page: 245 year: 2005 ident: 10.1016/j.jbiomech.2015.07.042_bib68 article-title: Change in knee cartilage T2 at MR imaging after running: a feasibility study publication-title: Radiology doi: 10.1148/radiol.2341040041 – volume: 13 start-page: 450 year: 1995 ident: 10.1016/j.jbiomech.2015.07.042_bib5 article-title: Contact areas in the thumb carpometacarpal joint publication-title: J. Orthop. Res. doi: 10.1002/jor.1100130320 – volume: 156 start-page: 61 year: 1981 ident: 10.1016/j.jbiomech.2015.07.042_bib11 article-title: The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-198105000-00008 – volume: 13 start-page: S101 year: 1999 ident: 10.1016/j.jbiomech.2015.07.042_bib12 article-title: Mechanotransduction in bone-role of the lacuno-canalicular network publication-title: FASEB J. doi: 10.1096/fasebj.13.9001.s101 – volume: 162 start-page: 266 year: 2012 ident: 10.1016/j.jbiomech.2015.07.042_bib18 article-title: Joint kinematics from functional adaptation: an application to the human ankle publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.162.266 – volume: 269 start-page: E438 year: 1995 ident: 10.1016/j.jbiomech.2015.07.042_bib101 article-title: Mechanotransduction in bone: role of strain rate publication-title: Am. J. Physiol. – volume: 101 start-page: 271 year: 1979 ident: 10.1016/j.jbiomech.2015.07.042_bib90 article-title: Determining the in-vivo areas of contact in the canine shoulder publication-title: J. Biomech. Eng. doi: 10.1115/1.3426257 – volume: 131 start-page: 288 year: 1978 ident: 10.1016/j.jbiomech.2015.07.042_bib77 article-title: Effect of repetitive impulsive loading on the knee joints of rabbits publication-title: Clin. Orthop. Relat. Res. – volume: 16 start-page: 918 year: 2001 ident: 10.1016/j.jbiomech.2015.07.042_bib44 article-title: Effects of loading frequency on mechanically induced bone formation publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2001.16.5.918 – volume: 8 start-page: 455 year: 2006 ident: 10.1016/j.jbiomech.2015.07.042_bib81 article-title: Biomechanical and molecular regulation of bone remodeling publication-title: Annum Revm Biomedm Eng. doi: 10.1146/annurev.bioeng.8.061505.095721 – volume: 15 start-page: 370 year: 2000 ident: 10.1016/j.jbiomech.2015.07.042_bib37 article-title: Effects of growth on the response of the rabbit patellar tendon to stress shielding: a biomechanical study publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(99)00077-7 – volume: 58 start-page: 27 year: 1999 ident: 10.1016/j.jbiomech.2015.07.042_bib93 article-title: Thickness of human articular cartilage in joints of the lower limb publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.58.1.27 – volume: 36 start-page: 125 year: 2003 ident: 10.1016/j.jbiomech.2015.07.042_bib28 article-title: A constraint-based approach to modelling the mobility of the human knee joint publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00276-2 – volume: 156 start-page: 52 year: 1981 ident: 10.1016/j.jbiomech.2015.07.042_bib98 article-title: Effects of activity on bone growth and development in the rat publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-198105000-00007 – volume: 21 start-page: 212 year: 2005 ident: 10.1016/j.jbiomech.2015.07.042_bib61 article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation publication-title: Gait Posture doi: 10.1016/j.gaitpost.2004.05.002 – volume: 10 start-page: 88 year: 1992 ident: 10.1016/j.jbiomech.2015.07.042_bib95 article-title: Rabbit knee immobilization: bone remodeling precedes cartilage degradation publication-title: J. Orthop. Res. doi: 10.1002/jor.1100100111 – volume: 29 start-page: 707 year: 1996 ident: 10.1016/j.jbiomech.2015.07.042_bib42 article-title: Biomechanical studies of the remodeling of knee joint tendons and ligaments publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00163-8 – volume: 56 start-page: 3706 year: 2007 ident: 10.1016/j.jbiomech.2015.07.042_bib69 article-title: Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling publication-title: Arthritis Rheum. doi: 10.1002/art.23024 – volume: 43 start-page: 480 year: 1966 ident: 10.1016/j.jbiomech.2015.07.042_bib8 article-title: Cellular remodeling in articular tissue publication-title: J. Dent. Res. doi: 10.1177/00220345660450030801 – volume: 49 start-page: 519 year: 1978 ident: 10.1016/j.jbiomech.2015.07.042_bib24 article-title: Joint changes after overuse and peak overloading of rabbit knees in vivo publication-title: Acta Orthop. Scand. doi: 10.3109/17453677808993232 – volume: 18 start-page: 189 year: 1985 ident: 10.1016/j.jbiomech.2015.07.042_bib13 article-title: Bone remodeling in response to in vivo fatigue microdamage publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90204-0 – volume: 42 start-page: 250 year: 2008 ident: 10.1016/j.jbiomech.2015.07.042_bib103 article-title: A unified theory for osteonal and hemi-osteonal remodeling publication-title: Bone doi: 10.1016/j.bone.2007.10.009 – volume: 53 start-page: 325 year: 1982 ident: 10.1016/j.jbiomech.2015.07.042_bib2 article-title: The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation publication-title: Acta Orthop. Scand. doi: 10.3109/17453678208992224 – volume: 72 start-page: 308 year: 1970 ident: 10.1016/j.jbiomech.2015.07.042_bib67 article-title: Effects of mechanical forces on growing cartilage publication-title: Clin. Orthop. Relat. Res. – volume: 15 start-page: 593 year: 1997 ident: 10.1016/j.jbiomech.2015.07.042_bib96 article-title: Surface remodeling of trabecular bone using a tissue level model publication-title: J. Orthop. Res. doi: 10.1002/jor.1100150416 – volume: 13 start-page: 136 year: 2009 ident: 10.1016/j.jbiomech.2015.07.042_bib116 article-title: Ligaments: a source of musculoskeletal disorders publication-title: J. Bodyw. Mov. Ther. doi: 10.1016/j.jbmt.2008.02.001 – volume: 2 start-page: 691 year: 2000 ident: 10.1016/j.jbiomech.2015.07.042_bib40 article-title: Cartilage tissue remodeling in response to mechanical forces publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.2.1.691 – volume: 228 start-page: 935 issue: 9 year: 2014 ident: 10.1016/j.jbiomech.2015.07.042_bib19 article-title: A sound and efficient measure of joint congruence publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med. doi: 10.1177/0954411914550848 – volume: 35 start-page: 293 year: 1984 ident: 10.1016/j.jbiomech.2015.07.042_bib73 article-title: Quantitative morphological and biochemical investigations on the effects of physical exercise and immobilization on the articular cartilage of young rabbits publication-title: Acta. Biol. Hung. – volume: 225 start-page: 725 year: 2011 ident: 10.1016/j.jbiomech.2015.07.042_bib87 article-title: A one degree-of-freedom spherical mechanism model of the human knee joint publication-title: Proc. Inst. Mech. Eng. H: J. Eng. Med. doi: 10.1177/0954411911406951 – volume: 33 start-page: 1 year: 2003 ident: 10.1016/j.jbiomech.2015.07.042_bib112 article-title: Aticular cartilage functional histomorphology and mechanobiology: a research perspective publication-title: Bone doi: 10.1016/S8756-3282(03)00083-8 – volume: 12 start-page: 580 year: 1997 ident: 10.1016/j.jbiomech.2015.07.042_bib70 article-title: Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.1997.12.4.580 – volume: 11 start-page: 68 year: 1993 ident: 10.1016/j.jbiomech.2015.07.042_bib105 article-title: Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments publication-title: J. Orthop. Res. doi: 10.1002/jor.1100110109 – volume: 5 start-page: 108 year: 1997 ident: 10.1016/j.jbiomech.2015.07.042_bib109 article-title: A three-dimensional geometric model of the knee for the study of joint forces in gait publication-title: Gait Posture doi: 10.1016/S0966-6362(96)01080-6 – volume: 6 start-page: 804 year: 1988 ident: 10.1016/j.jbiomech.2015.07.042_bib15 article-title: The role of mechanical loading histories in the development of diarthrodial joints publication-title: J. Orthop. Res. doi: 10.1002/jor.1100060604 – volume: 187 start-page: 231 year: 1993 ident: 10.1016/j.jbiomech.2015.07.042_bib79 article-title: Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius publication-title: Anat. Embryol. – volume: 120 start-page: 355 year: 1998 ident: 10.1016/j.jbiomech.2015.07.042_bib92 article-title: Swelling and curling behaviors of articular cartilage publication-title: J. Biomech. Eng. doi: 10.1115/1.2798002 – volume: 56 start-page: 255 year: 1997 ident: 10.1016/j.jbiomech.2015.07.042_bib51 article-title: Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.56.4.255 – year: 1980 ident: 10.1016/j.jbiomech.2015.07.042_bib74 – volume: 24 start-page: 512 year: 1862 ident: 10.1016/j.jbiomech.2015.07.042_bib106 article-title: Chirurgische erfahrungen uber knochenverbiegungen und knochenwachsthum publication-title: Virchows Arch. A Pathol. Anat. Histopathol. doi: 10.1007/BF01879454 |
SSID | ssj0007479 |
Score | 2.25977 |
Snippet | Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature... Abstract Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2960 |
SubjectTerms | Accuracy Adaptation Adaptation, Physiological Ankle Joint - physiology Articular Biomechanical Phenomena Biomechanics Bones Congruences Functional adaptation Human ankle Humans Joint congruence Joint kinmatics Kinematics Mathematical models Mechanical Phenomena Models, Biological Movement Optimization Physical Medicine and Rehabilitation Physiology Subject-specific modeling Tibia - physiology Translations Working conditions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_0CqIPpV79uFolgvgWm002ya4vcpWWUrCIWKhPIbfJQq-6e3avD_73TrLZtS9XRThYjks2tzuTmd9kvgDeoFavQhESinIvp7nzjFohOLVa5QuPu6_0MUD2TJ2c56cX8iIduHUprHKQiVFQu7YKZ-QHGd4sQwtZqQ-rnzR0jQre1dRC4z5soQgu5AS2Do_OPn8ZZTGC5RTkkVEEAuxWjvDy3TJmuEeXRCZjCc-cb1JPm-BnVEPHO7Cd8COZ9wR_DPd8M4XdeYO2849f5C2JEZ3xqHwKj24VG5zCg0_Jjb4L307by2ZNrvBLrNjakZBlQoKO648GiXV21Tvp35M5QW687HsvEfwgZCQh06SlCNztNYnMl7qAPYHz46OvH09o6rFAK7SL15RbFHZWWqeELZ2quKplLSvhvGIaCRza_THlJBLQ-2zhrEcAmCm81LlTCy6ewqRpG_8cSO1UKdHILatQDJjrklWMW-8QEtU5r-UM5PBqTZUKkIc-GN_NEGm2NANJTCCJYdogSWZwMM5b9SU4_jpDD5QzQ4IpikSDWuL_Zvou7ezOZKbjhpng5M4CRyGgDs7UYgblODOBlx6U_NOq-wN7mT8LjQw_g9fjz7j5g0fHNr696ceUTHOh7xqjCzS0ZVhm45hCaIGmvcb7POvZe3zVPBZlY2Lv7j_5Ah6GJwqhNFmxD5P19Y1_iXhtvXiVNuVvQIM-Lg priority: 102 providerName: ProQuest |
Title | Joint kinematics from functional adaptation: A validation on the tibio-talar articulation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929015004388 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929015004388 https://dx.doi.org/10.1016/j.jbiomech.2015.07.042 https://www.ncbi.nlm.nih.gov/pubmed/26300403 https://www.proquest.com/docview/1718119866 https://www.proquest.com/docview/1718907237 https://www.proquest.com/docview/1778026542 https://www.proquest.com/docview/1837340777 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1LaxNB-KO0IHqQmvpIW8sI4m2a3Xlme4ulJVYMIhbiaZjszEJS3YQmPfTib_eb2dm0IlFRCLtsMrOTne-93wvgNUr1MhQhocj3BBXOZ9RyzqjVSkw8Ul_hY4DsSA0vxcVYjrfgtM2FCWGVifc3PD1y6_RNL-1mbzGdhhxfpDYWTfbgzgoJv0LoUD__-PtdmAeqyynMI6dh9L0s4dnxLOa4R6dELmMRT8E2CahNCmgUROe78DhpkGTQ_MknsOXrDuwNarSev92SNyTGdMaX5R14dK_cYAcefEiO9D34cjGf1ityhRexZuuShDwTEqRc83KQWGcXjZv-hAwI4uO06b5E8INKIwm5JnOKqru9JnHDUh-wp3B5fvb5dEhTlwVaomW8oswiu7PSOsVt4VTJVCUrWXLnVaYRxKHhX6acRBB6n0-c9agC5gpPlXBqwvgz2K7ntX8BpHKqkGjmFmUoB8x0kZUZs96hUlQJVskuyHZrTZlKkIdOGF9NG2s2My1ITACJybRBkHSht563aIpw_HGGbiFn2hRTZIoG5cS_zfTLRNtLk5slM5n5Bf-6UKxn_oTCf7XqYYte5m4hpJ88L_pKdeHV-mck_-DTsbWf3zRjikwzrn83RvfR1JZhmY1j-lxzNO413ud5g97rrWaxLFvG9__jAQ_gYbgKkTZ5_xC2V9c3_iWqc6vJUaRXPOqxPoKdwbv3wxGe356NPn76AVqRSz8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3raxQxEB9KCz4-iF59nFaNoH5bm81ukltB5NSW6-sQaaF-irlNFnrq7tm7Iv2n_BudyT7sl6siFBaO5ZLNbjKZ-U3mBfAcpXpOSUgi5HtplDrPI5skIrJapROPuy_zwUF2rEZH6e6xPF6BX20sDLlVtjwxMGpX5XRGvhnjw2LUkJV6O_sRUdUosq62JTRqstjz5z9RZZu_2fmA6_tCiO2tw_ejqKkqEOWoCS4iYXF7W2mdSmzmVC5UIQuZJ84rrvGTqMAdV07iK3sfT5z1CHlihT9F6tSEEh0gy19DmJHhLlp7tzX--Knj_QjOG6eSOELgwS_EJE9fTUNEfTCBxDKkDE3FMnG4DO4Gsbd9G241eJUNawK7Ayu-7MH6sERd_fs5e8mCB2k4mu_BzQvJDXtw7aAx26_D593qpFywr3gTMsTOGUW1MJKp9VEks87OaqeA12zIkPpP6lpPDC-EqIwiW6oIFQV7ygKxN1XH7sLRlcz-PVgtq9I_AFY4lUlUqrOckg8LnfGcC-sdQrAiFYXsg2yn1uRNwnOqu_HNtJ5tU9MuiaElMVwbXJI-bHb9ZnXKj7_20O3KmTagFVmwQan0fz39vOEkcxObuTDckFE9JopCAE_G20Efsq5nA5ZqEPRPo2605GX-DNRtsD486_5GZkMWJFv66qxuk3EtEn1ZGz1AxV7SMEvbDBKdpFxrfM79mry7qRYhCRxPHl7-kk_h-ujwYN_s74z3HsEN-jpy44kHG7C6OD3zjxErLiZPmg3K4MtV84TfhKJ8Tw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6ULRR9EN16Wa0aQX2Lm8lMkhlBZLVdetGliIX6lGYnGeiqM2t3i_Sv-es8yVzsy1YRCgPLsMlkJjk55zs5N4DnKNVzn4SEIt9LaGIdoyaOOTVKJlOHuy9zwUF2InePkv1jcbwGv9pYGO9W2fLEwKhtlfsz8mGED4tQQ5ZyWDRuEYfb47fzH9RXkPKW1racRk0iB-7iJ6pvizd727jWLzgf73x-v0ubCgM0R61wSbnBrW6EsTI2mZU5l4UoRB5bJ5nCz_PF7pi0Al_fuWhqjUP4E0n8KRIrpz7pAbL_dYVSMe3B-rudyeGnTg4gUG8cTCKKIIRdik-evZqF6PpgDolESB-a8FWicRX0DSJwfBtuNdiVjGpiuwNrruzD5qhEvf37BXlJgjdpOKbvw81LiQ77sPGxMeFvwpf96rRckq94E7LFLoiPcCFevtbHksRYM68dBF6TEcGdcFrXfSJ4IVwlPsqloqg0mDMSCL-pQHYXjq5l9u9Br6xK9wBIYWUmUMHOcp-ImKuM5YwbZxGOFQkvxABEO7U6b5Kf-xoc33Tr5TbT7ZJovySaKY1LMoBh129ep__4aw_Vrpxug1uRHWuUUP_X0y0arrLQkV5wzbQ3sEeeohDMe0NuOoCs69kApxoQ_dOoWy156T8DdZttAM-6v5HxeGuSKV11XrfJmOKxuqqNSlHJF36YlW3SWMUJUwqfc78m726qeUgIx-KHV7_kU9hAXqA_7E0OHsEN_3HeoydKt6C3PDt3jxE2LqdPmv1J4OS6WcJvKyaAew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+kinematics+from+functional+adaptation%3A+A+validation+on+the+tibio-talar+articulation&rft.jtitle=Journal+of+biomechanics&rft.au=Conconi%2C+Michele&rft.au=Leardini%2C+Alberto&rft.au=Parenti-Castelli%2C+Vincenzo&rft.date=2015-09-18&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=48&rft.issue=12&rft.spage=2960&rft.epage=2967&rft_id=info:doi/10.1016%2Fj.jbiomech.2015.07.042&rft.externalDocID=S0021929015004388 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929015X0011X%2Fcov150h.gif |