Joint kinematics from functional adaptation: A validation on the tibio-talar articulation

Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 48; no. 12; pp. 2960 - 2967
Main Authors Conconi, Michele, Leardini, Alberto, Parenti-Castelli, Vincenzo
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 18.09.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2015.07.042

Cover

Loading…
More Information
Summary:Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2015.07.042