Elucidation of Hepatitis C Virus Transmission and Early Diversification by Single Genome Sequencing
A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F...
Saved in:
Published in | PLoS pathogens Vol. 8; no. 8; p. e1002880 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.08.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7374 1553-7366 1553-7374 |
DOI | 10.1371/journal.ppat.1002880 |
Cover
Loading…
Summary: | A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 AC52-06NA25396 USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division The authors have declared that no competing interests exist. Conceived and designed the experiments: HL LMB EEG PAG MSS TND BFH BHH RMR ASP BTK TB GMS. Performed the experiments: HL MBS SW EHP. Analyzed the data: HL LMB EEG GHL PH BHH RMR ASP BTK TB GMS. Contributed reagents/materials/analysis tools: LMB EEG PAG MSS TND BFH RMR ASP BTK TB. Wrote the paper: HL MBS SW LMB EEG EHP GHL PH PAG MSS TND BFH BHH RMR ASP BTK TB GMS. |
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1002880 |