Application of a Mathematical Model to Describe the Effects of Chlorpyrifos on Caenorhabditis elegans Development
Background: The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measur...
Saved in:
Published in | PloS one Vol. 4; no. 9; p. e7024 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
15.09.2009
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background: The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF) and extinction (EXT)) of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing. Methodology/Principal Findings: L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0–75 µM) and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT) and log(TOF) growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points) were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF) and log(EXT), growth rates, and time to reach change points) showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration. Conclusions: Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent manner. The most noticeable effect on growth occurred during early larval stages: L2 and L3. This study supports the utility of the C. elegans growth assay and mathematical modeling in determining the effects of potentially toxic substances in an alternative model organism using high-throughput technologies. |
---|---|
Bibliography: | http://dx.doi.org/10.1371/journal.pone.0007024 Conceived and designed the experiments: WAB CJP JHF. Performed the experiments: JRR DWS. Analyzed the data: WAB MVS GEK CJP. Wrote the paper: WAB MVS CJP JHF. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0007024 |