Diverse and robust molecular algorithms using reprogrammable DNA self-assembly
Molecular biology provides an inspiring proof-of-principle that chemical systems can store and process information to direct molecular activities such as the fabrication of complex structures from molecular components. To develop information-based chemistry as a technology for programming matter to...
Saved in:
Published in | Nature (London) Vol. 567; no. 7748; pp. 366 - 372 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Molecular biology provides an inspiring proof-of-principle that chemical systems can store and process information to direct molecular activities such as the fabrication of complex structures from molecular components. To develop information-based chemistry as a technology for programming matter to function in ways not seen in biological systems, it is necessary to understand how molecular interactions can encode and execute algorithms. The self-assembly of relatively simple units into complex products
1
is particularly well suited for such investigations. Theory that combines mathematical tiling and statistical–mechanical models of molecular crystallization has shown that algorithmic behaviour can be embedded within molecular self-assembly processes
2
,
3
, and this has been experimentally demonstrated using DNA nanotechnology
4
with up to 22 tile types
5
–
11
. However, many information technologies exhibit a complexity threshold—such as the minimum transistor count needed for a general-purpose computer—beyond which the power of a reprogrammable system increases qualitatively, and it has been unclear whether the biophysics of DNA self-assembly allows that threshold to be exceeded. Here we report the design and experimental validation of a DNA tile set that contains 355 single-stranded tiles and can, through simple tile selection, be reprogrammed to implement a wide variety of 6-bit algorithms. We use this set to construct 21 circuits that execute algorithms including copying, sorting, recognizing palindromes and multiples of 3, random walking, obtaining an unbiased choice from a biased random source, electing a leader, simulating cellular automata, generating deterministic and randomized patterns, and counting to 63, with an overall per-tile error rate of less than 1 in 3,000. These findings suggest that molecular self-assembly could be a reliable algorithmic component within programmable chemical systems. The development of molecular machines that are reprogrammable—at a high level of abstraction and thus without requiring knowledge of the underlying physics—will establish a creative space in which molecular programmers can flourish.
A set of 355 self-assembling DNA ‘tiles’ can be reprogrammed to implement many different computer algorithms—including sorting, palindrome testing and divisibility by three—suggesting that molecular self-assembly could be a reliable algorithmic component in programmable chemical systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-019-1014-9 |