Numerical Experiments on the Contrast Capability of Magnetic Resonance Electrical Property Tomography

Purpose: Magnetic resonance electrical property tomography (MR EPT) is a technique for non-invasively obtaining the electric property (EP) distribution of biological tissues, with a promising potential for application in the early detection of tumors. However, the contrast capability (CC) of this te...

Full description

Saved in:
Bibliographic Details
Published inMagnetic Resonance in Medical Sciences Vol. 19; no. 1; pp. 77 - 85
Main Authors Duan, Song, Zhu, Yurong, Liu, Feng, Xin, Sherman Xuegang
Format Journal Article
LanguageEnglish
Published Japan Japanese Society for Magnetic Resonance in Medicine 01.01.2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: Magnetic resonance electrical property tomography (MR EPT) is a technique for non-invasively obtaining the electric property (EP) distribution of biological tissues, with a promising potential for application in the early detection of tumors. However, the contrast capability (CC) of this technique has not been fully studied. This work aims to theoretically explore the CC for detecting the variation of EP values and the size of the imaging region.Methods: A simulation scheme was specifically designed to evaluate the CC of MR EPT. The simulation study has the advantage that the magnetic field can be accurately obtained. EP maps of the designed phantom embedded with target regions of designated various sizes and EPs were reconstructed using the homogeneous Helmholtz equation based on B1+ with different signal-to-noise ratios (SNRs). The CC was estimated by determining the smallest detectable EP contrast when the target region size was as large as the Laplacian kernel and the smallest detectable target region size when the EP contrast was the same as the difference between healthy and malignant tissues in the brain, based on the reconstructed EP maps.Results: Using noise free B1+, the smallest detectable contrastσ and contrastεr were 1% and 3%, respectively, and the smallest detectable target region size was 1 mesh unit (the base unit size used in the simulation) for conductivity and relative permittivity. The smallest detectable EP contrast and target region size were decreased as the B1+ SNR increased.Conclusion: The CC of MR EPT was related with the SNR of the magnetic field. A small EP contrast and size were necessary for detection at a high-SNR magnetic field. Obtaining a high-SNR magnetic field is important for improving the CC of MR EPT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1347-3182
1880-2206
DOI:10.2463/mrms.mp.2018-0167