Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages

Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ab...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 11; pp. 4401 - 4406
Main Authors Timmons, James A, Wennmalm, Kristian, Larsson, Ola, Walden, Tomas B, Lassmann, Timo, Petrovic, Natasa, Hamilton, D. Lee, Gimeno, Ruth E, Wahlestedt, Claes, Baar, Keith, Nedergaard, Jan, Cannon, Barbara
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.03.2007
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.A.T., K.W., and O.L. contributed equally to this work; J.A.T., J.N., and B.C. designed research; J.A.T., K.W., O.L., T.B.W., T.L., N.P., D.L.H., R.E.G., and K.B. performed research; J.A.T., K.W., O.L., T.B.W., T.L., D.L.H., R.E.G., K.B., J.N., and B.C. analyzed data; and J.A.T., O.L., C.W., J.N., and B.C. wrote the paper.
Communicated by Bruce M. Spiegelman, Dana–Farber Cancer Institute, Boston, MA, December 19, 2006
Present address: Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, MA 02140.
Present address: Department of Biochemistry, The Scripps Research Institute, Juniper, FL 33458.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.0610615104