Development of an efficient Agrobacterium-mediated transformation method and its application in tryptophan pathway modification in Catharanthus roseus

The biosynthetic pathway of Catharanthus roseus vinca alkaloids has a long research history, including not only identification of metabolic intermediates but also the mechanisms of inter-cellular transport and accumulation of biosynthesized components. Vinca alkaloids pathway begins with strictosidi...

Full description

Saved in:
Bibliographic Details
Published inPlant Biotechnology Vol. 40; no. 4; pp. 311 - 320
Main Authors Kisaka, Hiroaki, Chin, Dong Poh, Miwa, Tetsuya, Hirano, Hiroto, Uchiyama, Sato, Mii, Masahiro, Iyo, Mayu
Format Journal Article
LanguageEnglish
Japanese
Published Japan Japanese Society for Plant Biotechnology 25.12.2023
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The biosynthetic pathway of Catharanthus roseus vinca alkaloids has a long research history, including not only identification of metabolic intermediates but also the mechanisms of inter-cellular transport and accumulation of biosynthesized components. Vinca alkaloids pathway begins with strictosidine, which is biosynthesized by condensing tryptamine from the tryptophan pathway and secologanin from the isoprenoid pathway. Therefore, increasing the supply of precursor tryptophan may enhance vinca alkaloid content or their metabolic intermediates. Many reports on the genetic modification of C. roseus use cultured cells or hairy roots, but few reports cover the production of transgenic plants. In this study, we first investigated a method for stably producing transgenic plants of C. roseus, then, using this technique, we modified the tryptophan metabolism system to produce transgenic plants with increased tryptophan content. Transformed plants were obtained by infecting cotyledons two weeks after sowing with Agrobacterium strain A13 containing a plant expression vector, then selecting with 1/2 B5 medium supplemented with 50 mg l−1 kanamycin and 20 mg l−1 meropenem. Sixty-eight regenerated plants were obtained from 4,200 cotyledons infected with Agrobacterium, after which genomic PCR analysis using NPTII-specific primers confirmed gene presence in 24 plants with a transformation rate of 0.6%. Furthermore, we performed transformation into C. roseus using an expression vector to join trpE8 and aroG4 genes, which are feedback-resistant mutant genes derived from Escherichia coli. The resulting transformed plants showed exactly the same morphology as the wild-type, albeit with a marked increase in tryptophan and alkaloids content, especially catharanthine in leaves.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1342-4580
1347-6114
DOI:10.5511/plantbiotechnology.23.0819a