Evaluation of a metal artifact reduction algorithm in CT studies used for proton radiotherapy treatment planning

Metal objects in the body such as hip prostheses cause artifacts in CT images. When CT images degraded by artifacts are used for treatment planning of radiotherapy, the artifacts can yield inaccurate dose calculations and, for particle beams, erroneous penetration depths. A metal artifact reduction...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied clinical medical physics Vol. 15; no. 5; pp. 112 - 119
Main Authors Andersson, Karin M., Ahnesjö, Anders, Dahlgren, Christina Vallhagen
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.01.2014
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metal objects in the body such as hip prostheses cause artifacts in CT images. When CT images degraded by artifacts are used for treatment planning of radiotherapy, the artifacts can yield inaccurate dose calculations and, for particle beams, erroneous penetration depths. A metal artifact reduction software (O‐MAR) installed on a Philips Brilliance Big Bore CT has been tested for applications in treatment planning of proton radiotherapy. Hip prostheses mounted in a water phantom were used as test objects. Images without metal objects were acquired and used as reference data for the analysis of artifact‐affected regions outside of the metal objects in both the O‐MAR corrected and the uncorrected images. Water equivalent thicknesses (WET) based on proton stopping power data were calculated to quantify differences in the calculated proton beam penetration for the different image sets. The WET to a selected point of interest between the hip prostheses was calculated for several beam directions of clinical relevance. The results show that the calculated differences in WET relative to the reference case were decreased when the O‐MAR algorithm was applied. WET differences up to 2.0 cm were seen in the uncorrected case while, for the O‐MAR corrected case, the maximum difference was decreased to 0.4 cm. The O‐MAR algorithm can significantly improve the accuracy in proton range calculations. However, there are some residual effects, and the use of proton beam directions along artifact streaks should only be used with caution and appropriate margins. PACS numbers: 87.55.D‐, 87.57.cp
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1526-9914
1526-9914
DOI:10.1120/jacmp.v15i5.4857