Modulating glycosphingolipid metabolism and autophagy improves outcomes in pre-clinical models of myeloma bone disease

Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 7868 - 18
Main Authors Leng, Houfu, Zhang, Hanlin, Li, Linsen, Zhang, Shuhao, Wang, Yanping, Chavda, Selina J., Galas-Filipowicz, Daria, Lou, Hantao, Ersek, Adel, Morris, Emma V., Sezgin, Erdinc, Lee, Yi-Hsuan, Li, Yunsen, Lechuga-Vieco, Ana Victoria, Tian, Mei, Mi, Jian-Qing, Yong, Kwee, Zhong, Qing, Edwards, Claire M., Simon, Anna Katharina, Horwood, Nicole J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone loss in preclinical in vivo models of myeloma. In combination with zoledronic acid, a bisphosphonate that treats myeloma bone disease, eliglustat provided further protection from bone loss. Autophagic degradation of TRAF3, a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. Eliglustat blocked autophagy by altering glycosphingolipid composition whilst restoration of missing glycosphingolipids rescued autophagy markers and TRAF3 degradation thus restoring osteoclastogenesis in bone marrow cells from myeloma patients. This work delineates both the mechanism by which glucosylceramide synthase inhibition prevents autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the clinical translational potential of eliglustat for the treatment of myeloma bone disease. Here, the authors show that the glycosylceramide synthesis inhibitor and FDA approved drug Eliglustat inhibits autophagic degradation of TRAF3 which is a key step for osteoclast differentiation and thereby improves myeloma bone lesions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-35358-3