Multiple testing for neuroimaging via hidden Markov random field
Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov...
Saved in:
Published in | Biometrics Vol. 71; no. 3; pp. 741 - 750 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2015
International Biometric Society |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 |
DOI | 10.1111/biom.12329 |
Cover
Loading…
Abstract | Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation–maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative. |
---|---|
AbstractList | Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative. Summary Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local‐significance‐index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three‐dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation–maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG‐PET imaging study of the Alzheimer's Disease Neuroimaging Initiative. Traditional voxel-level multiple testing procedures in neuroimaging, mostly p -value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer’s or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer’s Disease Neuroimaging Initiative. Summary Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative. |
Author | Shu, Hai Nan, Bin Koeppe, Robert |
AuthorAffiliation | 2 Department of Radiology, University of Michigan, Ann Arbor, Michigan, U.S.A 1 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A |
AuthorAffiliation_xml | – name: 2 Department of Radiology, University of Michigan, Ann Arbor, Michigan, U.S.A – name: 1 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A |
Author_xml | – sequence: 1 givenname: Hai surname: Shu fullname: Shu, Hai organization: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A – sequence: 2 givenname: Bin surname: Nan fullname: Nan, Bin email: bnan@umich.edu organization: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A – sequence: 3 givenname: Robert surname: Koeppe fullname: Koeppe, Robert organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26012881$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFDXtQJDYVUorfjjcIqCAUdaabIhAby5M4Uw-JPdjJlP57HNIOUCGEN5bv-c7Rta8PwJ7zzgDwGMFjlNaLpfXdMcIEy3tghhhFOaQY7oEZhJDnhKLP--AgxnU6SgbxA7CPOUS4KNAMvJoPbW83rcl6E3vrVlnjQ-bMELzt9GosbK3OLm1dG5fNdfjqt1nQrvZd1ljT1g_B_Ua30Ty62Q_Bx3dvL07e52fn5enJ67O84kLIXDaQQtYQKBpKkKF6qRFlSwJrwjDRjLOKVpIRUfAGk2XdMJkqBSKFqJqKSHIIXk65m2HZmboyrg-6VZuQ2gzXymur_lScvVQrv1WUCckoTgFHNwHBfxvSZVVnY2XaVjvjh6iQoJxwQRn8DxQRSSXHNKHP7qBrPwSXXmKksIREIJaop783v-v6dg4JeD4BVfAxBtPsEATVOGQ1Dln9HHKC4R24sr3urR8vbtu_W9BkubKtuf5HuHpzej6_9TyZPOvY-_CrZ8pIUfBRzyfdxt583-npiyguiGDq06JUZbn48OWiXChEfgCBytCq |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1080_01621459_2020_1859379 crossref_primary_10_1080_01621459_2024_2359739 crossref_primary_10_1177_1471082X221121235 crossref_primary_10_1016_j_jspi_2024_106161 crossref_primary_10_1080_01621459_2017_1319838 crossref_primary_10_1109_TSIPN_2022_3190735 crossref_primary_10_1155_2020_7482403 crossref_primary_10_1080_00949655_2019_1710507 crossref_primary_10_1080_03610918_2022_2061001 crossref_primary_10_1007_s11749_020_00746_8 crossref_primary_10_1175_JCLI_D_19_0077_1 crossref_primary_10_1007_s00180_023_01367_z crossref_primary_10_1016_j_csda_2019_01_009 crossref_primary_10_1111_rssc_12320 crossref_primary_10_1002_cjs_11595 crossref_primary_10_1007_s00180_017_0724_4 crossref_primary_10_1080_01621459_2018_1451335 crossref_primary_10_1016_j_jalz_2016_11_007 crossref_primary_10_1111_sjos_12608 crossref_primary_10_1093_biomtc_ujae157 crossref_primary_10_1016_j_csda_2022_107664 |
Cites_doi | 10.1214/009053607000000730 10.1111/1467-9868.00176 10.1111/j.2517-6161.1995.tb02031.x 10.3102/10769986025001060 10.1016/j.neuroimage.2008.05.021 10.1016/j.neuroimage.2013.06.020 10.1214/07-AOAS157 10.1198/016214507000000545 10.1214/009053604000000283 10.1007/978-3-642-55760-6 10.1111/1467-9469.00317 10.1080/01621459.1996.10476984 10.1111/j.2517-6161.1977.tb01600.x 10.1177/0962280212448970 10.1111/1467-9868.00347 10.1111/j.1467-9469.2006.00530.x 10.1016/0304-4149(94)90134-1 10.1198/016214504000000089 10.1006/nimg.2001.1037 10.1093/bioinformatics/btp476 10.1198/jasa.2009.tm08415 10.1109/TPAMI.1984.4767596 10.1007/978-0-387-92407-6 10.1214/aos/1074290335 10.1214/10-AOS848 10.1016/j.neuroimage.2009.10.090 10.1007/978-1-4757-3124-8 10.1090/S0002-9939-2013-11741-7 10.1007/978-0-387-21738-3 10.1111/j.1467-9868.2008.00694.x 10.1093/biomet/34.1-2.28 10.1214/aos/1013699998 |
ContentType | Journal Article |
Copyright | Copyright © 2015 International Biometric Society 2015, The International Biometric Society 2015, The International Biometric Society. |
Copyright_xml | – notice: Copyright © 2015 International Biometric Society – notice: 2015, The International Biometric Society – notice: 2015, The International Biometric Society. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 5PM |
DOI | 10.1111/biom.12329 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 750 |
ExternalDocumentID | PMC4579542 3809512381 26012881 10_1111_biom_12329 BIOM12329 24538869 ark_67375_WNG_GGNJZTGN_1 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: U01-AG024904 – fundername: NIA NIH HHS grantid: R01 AG036802 – fundername: NIA NIH HHS grantid: R01-AG036802 – fundername: NIA NIH HHS grantid: U01 AG024904 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANLZ AAONW AAPXW AASGY AAUAY AAXRX AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXQS ADACV ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AANHP AAWIL AAYCA ABAWQ ABDFA ABGNP ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGORE AGQPQ AGXDD AIDQK AIDYY AIHAF AJNCP ALRMG NU- AHGBF AJBYB H13 PHGZM PHGZT PJZUB PPXIY PQGLB AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6779-9f0405f307f431e4aba145b30d3523a565c4c953786f23bdf595c481387cfc393 |
IEDL.DBID | DR2 |
ISSN | 0006-341X |
IngestDate | Thu Aug 21 18:21:04 EDT 2025 Fri Jul 11 18:23:09 EDT 2025 Wed Jul 30 10:39:02 EDT 2025 Wed Aug 13 10:06:23 EDT 2025 Mon Jul 21 05:49:20 EDT 2025 Tue Jul 01 00:58:05 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Wed Aug 20 07:26:49 EDT 2025 Thu Jul 03 22:31:18 EDT 2025 Wed Oct 30 09:52:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | False discovery rate Ising model Local significance index Alzheimer's disease Penalized likelihood Generalized expectation-maximization algorithm |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6779-9f0405f307f431e4aba145b30d3523a565c4c953786f23bdf595c481387cfc393 |
Notes | ArticleID:BIOM12329 ark:/67375/WNG-GGNJZTGN-1 istex:EB5AAFB2D4A1E862A2750462EEFFEED397E9B5AE ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 koeppe@umich.edu haishu@umich.edu bnan@umich.edu |
OpenAccessLink | http://doi.org/10.1111/biom.12329 |
PMID | 26012881 |
PQID | 1712903715 |
PQPubID | 35366 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579542 proquest_miscellaneous_1746367450 proquest_miscellaneous_1713949624 proquest_journals_1712903715 pubmed_primary_26012881 crossref_primary_10_1111_biom_12329 crossref_citationtrail_10_1111_biom_12329 wiley_primary_10_1111_biom_12329_BIOM12329 jstor_primary_24538869 istex_primary_ark_67375_WNG_GGNJZTGN_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biom |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd International Biometric Society |
Publisher_xml | – name: Blackwell Publishing Ltd – name: International Biometric Society |
References | Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society, Series B 64, 499-517. Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. New York: Springer. Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis, 3rd edition. New York: Springer. Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25, 60-83. Chandgotia, N., Han, G., Marcus, B., Meyerovitch, T., and Pavlov, R. (2014). One-dimensional Markov random fields, Markov chains and topological Markov fields. Proceedings of the American Mathematical Society 142, 227-242. Chumbley, J. R. and Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage 44, 62-70. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38. Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide association studies via hidden Markov models. Bioinformatics 25, 2802-2808. Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870-878. Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. The Annals of Statistics 32, 1035-1061. Huang, L., Goldsmith, J., Reiss, P. T., Reich, D. S., and Crainiceanu, C. M. (2013). Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83, 210-223. Chumbley, J., Worsley, K., Flandin, G., and Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage 49, 3057-3064. Garey, L. J. (2006). Brodmann's Localisation in the Cerebral Cortex. New York: Springer. Johnson, T. D., Liu, Z., Bartsch, A. J., and Nichols, T. E. (2013). A Bayesian non-parametric Potts model with application to pre-surgical FMRI data. Statistical Methods in Medical Research 22, 364-381. Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912. Farcomeni, A. (2007). Some results on the control of the false discovery rate under dependence. Scandinavian Journal of Statistics 34, 275-297. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741. Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104. Roberts, G. O. and Smith A. F. M. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications 49, 207-216. Bremaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer. Magder, L. S. and Zeger, S. L., (1996). A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. Journal of the American Statistical Association 91, 1141-1151. Sun, W. and Cai, T. T. (2009). Large-scale multiple testing under dependence. Journal of the Royal Statistical Society, Series B 71, 393-424. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289-300. Chen, J., Tan, X., and Zhang, R. (2008). Inference for normal mixtures in mean and variance. Statistica Sinica 18, 443-465. Nocedal, J. and Wright, S. (2006). Numerical Optimization, 2nd edition. New York: Springer. Cai, T. and Sun, W. (2009). Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks. Journal of the American Statistical Association 104, 1467-1481. Welch, B. L. (1947). The generalization of 'Student's' problem when several different population variances are involved. Biometrika 34, 28-35. Zhang, X., Johnson, T. D., Little, R. J. A., and Cao, Y. (2008). Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation. The Annals of Applied Statistics 2, 736-755. Zhang, C, Fan, J., and Yu, T. (2011). Multiple testing via FDR_L for large-scale image data. The Annals of Statistics 39, 613-642. Winkler, G. (2003). Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edition. New York: Springer. Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics 31, 2013-2035. Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165-1188. Wu, W. B. (2008). On false discovery control under dependence. The Annals of Statistics 36, 364-380. Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 61, 265-285. Ciuperca, G., Ridolfi, A., and Idier, J. (2003). Penalized maximum likelihood estimator for normal mixtures. Scandinavian Journal of Statistics 30, 45-59. 2009; 44 2009; 25 2002; 15 2007; 102 2000; 25 2013; 22 1995; 57 2008; 18 2013; 83 2009 2008; 36 1997 2006 1994; 49 2003 2001; 29 1999; 61 1996; 91 2002 2011; 39 2008; 2 2003; 30 2007; 34 2003; 31 1999 2004; 32 2004; 99 2010; 49 2002; 64 1977; 39 1947; 34 2009; 71 1984; 6 2014 2014; 142 2009; 104 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Dempster A. P. (e_1_2_9_14_1) 1977; 39 Garey L. J. (e_1_2_9_17_1) 2006 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_36_1 Chen J. (e_1_2_9_9_1) 2008; 18 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Nocedal J. (e_1_2_9_26_1) 2006 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – reference: Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. New York: Springer. – reference: Welch, B. L. (1947). The generalization of 'Student's' problem when several different population variances are involved. Biometrika 34, 28-35. – reference: Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics 31, 2013-2035. – reference: Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 61, 265-285. – reference: Magder, L. S. and Zeger, S. L., (1996). A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. Journal of the American Statistical Association 91, 1141-1151. – reference: Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis, 3rd edition. New York: Springer. – reference: Garey, L. J. (2006). Brodmann's Localisation in the Cerebral Cortex. New York: Springer. – reference: Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912. – reference: Roberts, G. O. and Smith A. F. M. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications 49, 207-216. – reference: Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104. – reference: Huang, L., Goldsmith, J., Reiss, P. T., Reich, D. S., and Crainiceanu, C. M. (2013). Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83, 210-223. – reference: Bremaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer. – reference: Cai, T. and Sun, W. (2009). Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks. Journal of the American Statistical Association 104, 1467-1481. – reference: Sun, W. and Cai, T. T. (2009). Large-scale multiple testing under dependence. Journal of the Royal Statistical Society, Series B 71, 393-424. – reference: Winkler, G. (2003). Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edition. New York: Springer. – reference: Farcomeni, A. (2007). Some results on the control of the false discovery rate under dependence. Scandinavian Journal of Statistics 34, 275-297. – reference: Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741. – reference: Chandgotia, N., Han, G., Marcus, B., Meyerovitch, T., and Pavlov, R. (2014). One-dimensional Markov random fields, Markov chains and topological Markov fields. Proceedings of the American Mathematical Society 142, 227-242. – reference: Wu, W. B. (2008). On false discovery control under dependence. The Annals of Statistics 36, 364-380. – reference: Johnson, T. D., Liu, Z., Bartsch, A. J., and Nichols, T. E. (2013). A Bayesian non-parametric Potts model with application to pre-surgical FMRI data. Statistical Methods in Medical Research 22, 364-381. – reference: Chen, J., Tan, X., and Zhang, R. (2008). Inference for normal mixtures in mean and variance. Statistica Sinica 18, 443-465. – reference: Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870-878. – reference: Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society, Series B 64, 499-517. – reference: Zhang, C, Fan, J., and Yu, T. (2011). Multiple testing via FDR_L for large-scale image data. The Annals of Statistics 39, 613-642. – reference: Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289-300. – reference: Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165-1188. – reference: Ciuperca, G., Ridolfi, A., and Idier, J. (2003). Penalized maximum likelihood estimator for normal mixtures. Scandinavian Journal of Statistics 30, 45-59. – reference: Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. The Annals of Statistics 32, 1035-1061. – reference: Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38. – reference: Chumbley, J. R. and Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage 44, 62-70. – reference: Chumbley, J., Worsley, K., Flandin, G., and Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage 49, 3057-3064. – reference: Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide association studies via hidden Markov models. Bioinformatics 25, 2802-2808. – reference: Nocedal, J. and Wright, S. (2006). Numerical Optimization, 2nd edition. New York: Springer. – reference: Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25, 60-83. – reference: Zhang, X., Johnson, T. D., Little, R. J. A., and Cao, Y. (2008). Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation. The Annals of Applied Statistics 2, 736-755. – volume: 6 start-page: 721 year: 1984 end-page: 741 article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 18 start-page: 443 year: 2008 end-page: 465 article-title: Inference for normal mixtures in mean and variance publication-title: Statistica Sinica – volume: 29 start-page: 1165 year: 2001 end-page: 1188 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: The Annals of Statistics – volume: 71 start-page: 393 year: 2009 end-page: 424 article-title: Large‐scale multiple testing under dependence publication-title: Journal of the Royal Statistical Society, Series B – volume: 25 start-page: 2802 year: 2009 end-page: 2808 article-title: Multiple testing in genome‐wide association studies via hidden Markov models publication-title: Bioinformatics – volume: 142 start-page: 227 year: 2014 end-page: 242 article-title: One‐dimensional Markov random fields, Markov chains and topological Markov fields publication-title: Proceedings of the American Mathematical Society – year: 1999 publication-title: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues – volume: 39 start-page: 613 year: 2011 end-page: 642 article-title: Multiple testing via FDR_L for large‐scale image data publication-title: The Annals of Statistics – volume: 25 start-page: 60 year: 2000 end-page: 83 article-title: On the adaptive control of the false discovery rate in multiple testing with independent statistics publication-title: Journal of Educational and Behavioral Statistics – volume: 34 start-page: 275 year: 2007 end-page: 297 article-title: Some results on the control of the false discovery rate under dependence publication-title: Scandinavian Journal of Statistics – volume: 36 start-page: 364 year: 2008 end-page: 380 article-title: On false discovery control under dependence publication-title: The Annals of Statistics – volume: 32 start-page: 1035 year: 2004 end-page: 1061 article-title: A stochastic process approach to false discovery control publication-title: The Annals of Statistics – year: 2003 publication-title: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods – volume: 31 start-page: 2013 year: 2003 end-page: 2035 article-title: The positive false discovery rate: A Bayesian interpretation and the q‐value publication-title: The Annals of Statistics – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society, Series B – year: 2014 – volume: 102 start-page: 901 year: 2007 end-page: 912 article-title: Oracle and adaptive compound decision rules for false discovery rate control publication-title: Journal of the American Statistical Association – volume: 104 start-page: 1467 year: 2009 end-page: 1481 article-title: Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks publication-title: Journal of the American Statistical Association – volume: 49 start-page: 3057 year: 2010 end-page: 3064 article-title: Topological FDR for neuroimaging publication-title: NeuroImage – year: 2006 publication-title: Brodmann's Localisation in the Cerebral Cortex – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B – volume: 44 start-page: 62 year: 2009 end-page: 70 article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields publication-title: NeuroImage – volume: 91 start-page: 1141 year: 1996 end-page: 1151 article-title: A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians publication-title: Journal of the American Statistical Association – volume: 34 start-page: 28 year: 1947 end-page: 35 article-title: The generalization of ‘Student's’ problem when several different population variances are involved publication-title: Biometrika – volume: 15 start-page: 870 year: 2002 end-page: 878 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage – volume: 49 start-page: 207 year: 1994 end-page: 216 article-title: Simple conditions for the convergence of the Gibbs sampler and Metropolis‐Hastings algorithms publication-title: Stochastic Processes and their Applications – volume: 99 start-page: 96 year: 2004 end-page: 104 article-title: Large‐scale simultaneous hypothesis testing: The choice of a null hypothesis publication-title: Journal of the American Statistical Association – year: 1997 – volume: 61 start-page: 265 year: 1999 end-page: 285 article-title: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm publication-title: Journal of the Royal Statistical Society, Series B – volume: 22 start-page: 364 year: 2013 end-page: 381 article-title: A Bayesian non‐parametric Potts model with application to pre‐surgical FMRI data publication-title: Statistical Methods in Medical Research – year: 2006 publication-title: Numerical Optimization – volume: 2 start-page: 736 year: 2008 end-page: 755 article-title: Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation publication-title: The Annals of Applied Statistics – year: 2002 publication-title: Introduction to Numerical Analysis – volume: 30 start-page: 45 year: 2003 end-page: 59 article-title: Penalized maximum likelihood estimator for normal mixtures publication-title: Scandinavian Journal of Statistics – volume: 64 start-page: 499 year: 2002 end-page: 517 article-title: Operating characteristics and extensions of the false discovery rate procedure publication-title: Journal of the Royal Statistical Society, Series B – volume: 83 start-page: 210 year: 2013 end-page: 223 article-title: Bayesian scalar‐on‐image regression with application to association between intracranial DTI and cognitive outcomes publication-title: NeuroImage – year: 2009 publication-title: A First Course in Bayesian Statistical Methods – ident: e_1_2_9_36_1 doi: 10.1214/009053607000000730 – ident: e_1_2_9_5_1 doi: 10.1111/1467-9868.00176 – volume: 18 start-page: 443 year: 2008 ident: e_1_2_9_9_1 article-title: Inference for normal mixtures in mean and variance publication-title: Statistica Sinica – ident: e_1_2_9_2_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_9_3_1 doi: 10.3102/10769986025001060 – ident: e_1_2_9_10_1 doi: 10.1016/j.neuroimage.2008.05.021 – ident: e_1_2_9_23_1 doi: 10.1016/j.neuroimage.2013.06.020 – ident: e_1_2_9_38_1 doi: 10.1214/07-AOAS157 – ident: e_1_2_9_31_1 doi: 10.1198/016214507000000545 – ident: e_1_2_9_21_1 doi: 10.1214/009053604000000283 – ident: e_1_2_9_13_1 – ident: e_1_2_9_35_1 doi: 10.1007/978-3-642-55760-6 – ident: e_1_2_9_12_1 doi: 10.1111/1467-9469.00317 – year: 2006 ident: e_1_2_9_17_1 publication-title: Brodmann's Localisation in the Cerebral Cortex – ident: e_1_2_9_25_1 doi: 10.1080/01621459.1996.10476984 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_9_14_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_9_27_1 – ident: e_1_2_9_24_1 doi: 10.1177/0962280212448970 – year: 2006 ident: e_1_2_9_26_1 publication-title: Numerical Optimization – ident: e_1_2_9_20_1 doi: 10.1111/1467-9868.00347 – ident: e_1_2_9_16_1 doi: 10.1111/j.1467-9469.2006.00530.x – ident: e_1_2_9_28_1 doi: 10.1016/0304-4149(94)90134-1 – ident: e_1_2_9_15_1 doi: 10.1198/016214504000000089 – ident: e_1_2_9_19_1 doi: 10.1006/nimg.2001.1037 – ident: e_1_2_9_33_1 doi: 10.1093/bioinformatics/btp476 – ident: e_1_2_9_7_1 doi: 10.1198/jasa.2009.tm08415 – ident: e_1_2_9_18_1 doi: 10.1109/TPAMI.1984.4767596 – ident: e_1_2_9_22_1 doi: 10.1007/978-0-387-92407-6 – ident: e_1_2_9_30_1 doi: 10.1214/aos/1074290335 – ident: e_1_2_9_37_1 doi: 10.1214/10-AOS848 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2009.10.090 – ident: e_1_2_9_6_1 doi: 10.1007/978-1-4757-3124-8 – ident: e_1_2_9_8_1 doi: 10.1090/S0002-9939-2013-11741-7 – ident: e_1_2_9_29_1 doi: 10.1007/978-0-387-21738-3 – ident: e_1_2_9_32_1 doi: 10.1111/j.1467-9868.2008.00694.x – ident: e_1_2_9_34_1 doi: 10.1093/biomet/34.1-2.28 – ident: e_1_2_9_4_1 doi: 10.1214/aos/1013699998 |
SSID | ssj0009502 |
Score | 2.2988424 |
Snippet | Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and... Summary Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring... Summary Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring... Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring voxels and... Traditional voxel-level multiple testing procedures in neuroimaging, mostly p -value based, often ignore the spatial correlations among neighboring voxels and... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 741 |
SubjectTerms | Algorithms Alzheimer disease Alzheimer Disease - diagnostic imaging Alzheimer's disease BIOMETRIC METHODOLOGY biometry Cognitive Dysfunction - diagnostic imaging Computer Simulation False discovery rate Fluorodeoxyglucose F18 Generalized expectation-maximization algorithm Humans image analysis Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Ising model Local significance index Markov analysis Markov chain Markov Chains Medical imaging Models, Statistical Neuroimaging - methods Penalized likelihood Positron-Emission Tomography - methods Radiopharmaceuticals Reproducibility of Results risk Sensitivity and Specificity |
Title | Multiple testing for neuroimaging via hidden Markov random field |
URI | https://api.istex.fr/ark:/67375/WNG-GGNJZTGN-1/fulltext.pdf https://www.jstor.org/stable/24538869 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12329 https://www.ncbi.nlm.nih.gov/pubmed/26012881 https://www.proquest.com/docview/1712903715 https://www.proquest.com/docview/1713949624 https://www.proquest.com/docview/1746367450 https://pubmed.ncbi.nlm.nih.gov/PMC4579542 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UilAfvKxWo1VGFEEhyyYzk8mAD16wWwu7grS4CBIyk4xd2mbF3S3qr_ecyaW7Wgr6FpKzITM5l2-y3_kG4Ck38cBK68JcF2UoSsFDLCO4SuGioAWETjn1O4_Gyd6h2J_IyQa8bHthan2I7oMbRYbP1xTguZmvBDm1p_cJEFD3HpG1CBF9jFcUdwe1VDiRu0Q0abRJicZz_tO1anSFJvZHS0y8CHL-zZxcRbS-JO3egC_tYGomynF_uTB9--sPncf_He1NuN5gVfa6dq5bsFFWPbha7175swfXRp3k67wHWwRba9Xn2_Bq1PAU2YJUPKqvDLEx89qZ01O_LxI7m-bsiPRLKkb9QrMzhlWzmJ0yz6m7A4e77w7e7oXNXg2hTZTSoXaYDaTDjOEQkpQiN3kkpOGDAhEezxE2WmG15CpNXMxN4aTGM2nEU2Wd5Zpvw2Y1q8p7wAqTaCsw8YkiFaWz2hQD7fDA5S43iQvgefvOMtsImdN-GidZu6Chycr8ZAXwpLP9Vst3XGj1zL_6zgSHTYQ3JbNP42E2HI73Px8Mx1kUwLb3jc4wFlgw0gTvsNM6S9YkgXkWKfrIx1UkA3jcXcbwpf9k8qqcLb0N10InsbjMhlTdlJCDAO7W_nf-AAkhjBSfTK15ZmdA8uHrV6rpkZcRF1JpKeIAXnjHu2R-sjfvP4z80f1_MX4AWwgvZc3I24HNxfdl-RAh3MI88qH6G90eQUw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTYjxwKUwCAwwAiGBlCqJ7Th-47p2YwkS6kTFi5U4MatgKaLtBPx6fJw0a2GaBG9Rcholzrl8dj9_B-AJLaJAc238XJaVzypGfVtG7CyFshInEDKhuN85zeLhIdsf83HLzcG9MI0-RLfghpHh8jUGOC5Ir0Q57k_vIyKQF2ETW3pjA4M3H6IVzd2gEQtHehcLx606KRJ5Tn-7Vo82cWh_LKmJZ4HOv7mTq5jWFaXda03n1ZnTMkQuypf-Yl709a8_lB7_-32vw9UWrpKXjX_dgAtV3YNLTQPLnz24knaqr7MebCFybYSfb8KLtKUqkjkKedSfiYXHxMlnTo5dayRyMsnJEUqY1AS3DE1PiC2c5fSYOFrdLTjcfTt6PfTbdg2-joWQvjQ2IXBjk4axqKRieZGHjBc0KC3Io7lFjpppyalIYhPRojRc2jNJSBOhjaaSbsNGPa2rO0DKIpaa2dzHyoRVRsuiDKSxByY3eREbD54tP5rSrZY5ttT4qpZzGhws5QbLg8ed7bdGweNMq6fu23cm9rWR8ya4-pgN1GCQ7X8aDTIVerDtnKMzjJitGUls77Cz9BbV5oGZCgWu81ERcg8edZdtBOPfMnldTRfOhkom44idZ4PCboLxwIPbjQOePkCMICOxTybWXLMzQAXx9Sv15MgpiTMuJGeRB8-d550zPurV3vvUHd39F-OHcHk4Sg_UwV727h5sWbTJG4LeDmzMvy-q-xbRzYsHLm5_A8IgRWY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH-YG8r84MvptDo1oggKPdomaRrwg6932_SqyIaHIKFNG3foesPdDfWvN0_6sjsdA_1W2qelSZ-XX9JffgF4SPMo0FwbP5NF6bOSUd-WETtKoazAAYRMKK53HqXx1h7bGfPxCjxt18LU-hDdhBtGhsvXGOCHhVkIclye3kdAIM_BGotttCAk-hAtSO4GtVY4srtYOG7ESZHHc3LvUjlaw5790TITT8Ocf1MnFyGtq0mDy_C5bU1NRfnan8_yvv71h9Dj_zb3ClxqwCp5XnvXVVgpqx6cr7ev_NmDi6NO8_WoB-uIW2vZ52vwbNQQFckMZTyqL8SCY-LEMycHbmMkcjzJyD4KmFQEFwxNj4ktm8X0gDhS3XXYG7zefbnlN5s1-DoWQvrS2HTAjU0ZxmKSkmV5FjKe06CwEI9mFjdqpiWnIolNRPPCcGnPJCFNhDaaSroBq9W0Km8CKfJYamYzHysSVhot8yKQxh6YzGR5bDx43H4zpRslc9xQ45tqRzTYWcp1lgcPOtvDWr_jVKtH7tN3JrbZyHgTXH1Mh2o4THc-7Q5TFXqw4XyjM4yYrRhJbJ-w2TqLarLAkQoFzvJREXIP7neXbfziT5msKqdzZ0Mlk3HEzrJBWTfBeODBjdr_Tl4gRoiR2DcTS57ZGaB--PKVarLvdMQZF5KzyIMnzvHO6B_1YvvdyB3d-hfje3Dh_auBerudvrkN6xZq8pqdtwmrs-_z8o6Fc7P8rova3-F2RB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+testing+for+neuroimaging+via+hidden+Markov+random+field&rft.jtitle=Biometrics&rft.au=Shu%2C+Hai&rft.au=Nan%2C+Bin&rft.au=Koeppe%2C+Robert&rft.date=2015-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=71&rft.issue=3&rft.spage=741&rft.epage=750&rft_id=info:doi/10.1111%2Fbiom.12329&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_GGNJZTGN_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |