Multiple testing for neuroimaging via hidden Markov random field

Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 71; no. 3; pp. 741 - 750
Main Authors Shu, Hai, Nan, Bin, Koeppe, Robert
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2015
International Biometric Society
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
DOI10.1111/biom.12329

Cover

Loading…
Abstract Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation–maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.
AbstractList Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.
Summary Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local‐significance‐index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three‐dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation–maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG‐PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.
Traditional voxel-level multiple testing procedures in neuroimaging, mostly p -value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer’s or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer’s Disease Neuroimaging Initiative.
Summary Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.
Author Shu, Hai
Nan, Bin
Koeppe, Robert
AuthorAffiliation 2 Department of Radiology, University of Michigan, Ann Arbor, Michigan, U.S.A
1 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A
AuthorAffiliation_xml – name: 2 Department of Radiology, University of Michigan, Ann Arbor, Michigan, U.S.A
– name: 1 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A
Author_xml – sequence: 1
  givenname: Hai
  surname: Shu
  fullname: Shu, Hai
  organization: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A
– sequence: 2
  givenname: Bin
  surname: Nan
  fullname: Nan, Bin
  email: bnan@umich.edu
  organization: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A
– sequence: 3
  givenname: Robert
  surname: Koeppe
  fullname: Koeppe, Robert
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26012881$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFDXtQJDYVUorfjjcIqCAUdaabIhAby5M4Uw-JPdjJlP57HNIOUCGEN5bv-c7Rta8PwJ7zzgDwGMFjlNaLpfXdMcIEy3tghhhFOaQY7oEZhJDnhKLP--AgxnU6SgbxA7CPOUS4KNAMvJoPbW83rcl6E3vrVlnjQ-bMELzt9GosbK3OLm1dG5fNdfjqt1nQrvZd1ljT1g_B_Ua30Ty62Q_Bx3dvL07e52fn5enJ67O84kLIXDaQQtYQKBpKkKF6qRFlSwJrwjDRjLOKVpIRUfAGk2XdMJkqBSKFqJqKSHIIXk65m2HZmboyrg-6VZuQ2gzXymur_lScvVQrv1WUCckoTgFHNwHBfxvSZVVnY2XaVjvjh6iQoJxwQRn8DxQRSSXHNKHP7qBrPwSXXmKksIREIJaop783v-v6dg4JeD4BVfAxBtPsEATVOGQ1Dln9HHKC4R24sr3urR8vbtu_W9BkubKtuf5HuHpzej6_9TyZPOvY-_CrZ8pIUfBRzyfdxt583-npiyguiGDq06JUZbn48OWiXChEfgCBytCq
CODEN BIOMA5
CitedBy_id crossref_primary_10_1080_01621459_2020_1859379
crossref_primary_10_1080_01621459_2024_2359739
crossref_primary_10_1177_1471082X221121235
crossref_primary_10_1016_j_jspi_2024_106161
crossref_primary_10_1080_01621459_2017_1319838
crossref_primary_10_1109_TSIPN_2022_3190735
crossref_primary_10_1155_2020_7482403
crossref_primary_10_1080_00949655_2019_1710507
crossref_primary_10_1080_03610918_2022_2061001
crossref_primary_10_1007_s11749_020_00746_8
crossref_primary_10_1175_JCLI_D_19_0077_1
crossref_primary_10_1007_s00180_023_01367_z
crossref_primary_10_1016_j_csda_2019_01_009
crossref_primary_10_1111_rssc_12320
crossref_primary_10_1002_cjs_11595
crossref_primary_10_1007_s00180_017_0724_4
crossref_primary_10_1080_01621459_2018_1451335
crossref_primary_10_1016_j_jalz_2016_11_007
crossref_primary_10_1111_sjos_12608
crossref_primary_10_1093_biomtc_ujae157
crossref_primary_10_1016_j_csda_2022_107664
Cites_doi 10.1214/009053607000000730
10.1111/1467-9868.00176
10.1111/j.2517-6161.1995.tb02031.x
10.3102/10769986025001060
10.1016/j.neuroimage.2008.05.021
10.1016/j.neuroimage.2013.06.020
10.1214/07-AOAS157
10.1198/016214507000000545
10.1214/009053604000000283
10.1007/978-3-642-55760-6
10.1111/1467-9469.00317
10.1080/01621459.1996.10476984
10.1111/j.2517-6161.1977.tb01600.x
10.1177/0962280212448970
10.1111/1467-9868.00347
10.1111/j.1467-9469.2006.00530.x
10.1016/0304-4149(94)90134-1
10.1198/016214504000000089
10.1006/nimg.2001.1037
10.1093/bioinformatics/btp476
10.1198/jasa.2009.tm08415
10.1109/TPAMI.1984.4767596
10.1007/978-0-387-92407-6
10.1214/aos/1074290335
10.1214/10-AOS848
10.1016/j.neuroimage.2009.10.090
10.1007/978-1-4757-3124-8
10.1090/S0002-9939-2013-11741-7
10.1007/978-0-387-21738-3
10.1111/j.1467-9868.2008.00694.x
10.1093/biomet/34.1-2.28
10.1214/aos/1013699998
ContentType Journal Article
Copyright Copyright © 2015 International Biometric Society
2015, The International Biometric Society
2015, The International Biometric Society.
Copyright_xml – notice: Copyright © 2015 International Biometric Society
– notice: 2015, The International Biometric Society
– notice: 2015, The International Biometric Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
DOI 10.1111/biom.12329
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest Computer Science Collection

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 750
ExternalDocumentID PMC4579542
3809512381
26012881
10_1111_biom_12329
BIOM12329
24538869
ark_67375_WNG_GGNJZTGN_1
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01-AG024904
– fundername: NIA NIH HHS
  grantid: R01 AG036802
– fundername: NIA NIH HHS
  grantid: R01-AG036802
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AAPXW
AASGY
AAUAY
AAXRX
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
AHGBF
AJBYB
H13
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6779-9f0405f307f431e4aba145b30d3523a565c4c953786f23bdf595c481387cfc393
IEDL.DBID DR2
ISSN 0006-341X
IngestDate Thu Aug 21 18:21:04 EDT 2025
Fri Jul 11 18:23:09 EDT 2025
Wed Jul 30 10:39:02 EDT 2025
Wed Aug 13 10:06:23 EDT 2025
Mon Jul 21 05:49:20 EDT 2025
Tue Jul 01 00:58:05 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
Wed Aug 20 07:26:49 EDT 2025
Thu Jul 03 22:31:18 EDT 2025
Wed Oct 30 09:52:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords False discovery rate
Ising model
Local significance index
Alzheimer's disease
Penalized likelihood
Generalized expectation-maximization algorithm
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6779-9f0405f307f431e4aba145b30d3523a565c4c953786f23bdf595c481387cfc393
Notes ArticleID:BIOM12329
ark:/67375/WNG-GGNJZTGN-1
istex:EB5AAFB2D4A1E862A2750462EEFFEED397E9B5AE
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
koeppe@umich.edu
haishu@umich.edu
bnan@umich.edu
OpenAccessLink http://doi.org/10.1111/biom.12329
PMID 26012881
PQID 1712903715
PQPubID 35366
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579542
proquest_miscellaneous_1746367450
proquest_miscellaneous_1713949624
proquest_journals_1712903715
pubmed_primary_26012881
crossref_primary_10_1111_biom_12329
crossref_citationtrail_10_1111_biom_12329
wiley_primary_10_1111_biom_12329_BIOM12329
jstor_primary_24538869
istex_primary_ark_67375_WNG_GGNJZTGN_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biom
PublicationYear 2015
Publisher Blackwell Publishing Ltd
International Biometric Society
Publisher_xml – name: Blackwell Publishing Ltd
– name: International Biometric Society
References Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society, Series B 64, 499-517.
Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. New York: Springer.
Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis, 3rd edition. New York: Springer.
Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25, 60-83.
Chandgotia, N., Han, G., Marcus, B., Meyerovitch, T., and Pavlov, R. (2014). One-dimensional Markov random fields, Markov chains and topological Markov fields. Proceedings of the American Mathematical Society 142, 227-242.
Chumbley, J. R. and Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage 44, 62-70.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38.
Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide association studies via hidden Markov models. Bioinformatics 25, 2802-2808.
Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870-878.
Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. The Annals of Statistics 32, 1035-1061.
Huang, L., Goldsmith, J., Reiss, P. T., Reich, D. S., and Crainiceanu, C. M. (2013). Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83, 210-223.
Chumbley, J., Worsley, K., Flandin, G., and Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage 49, 3057-3064.
Garey, L. J. (2006). Brodmann's Localisation in the Cerebral Cortex. New York: Springer.
Johnson, T. D., Liu, Z., Bartsch, A. J., and Nichols, T. E. (2013). A Bayesian non-parametric Potts model with application to pre-surgical FMRI data. Statistical Methods in Medical Research 22, 364-381.
Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912.
Farcomeni, A. (2007). Some results on the control of the false discovery rate under dependence. Scandinavian Journal of Statistics 34, 275-297.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741.
Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104.
Roberts, G. O. and Smith A. F. M. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications 49, 207-216.
Bremaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer.
Magder, L. S. and Zeger, S. L., (1996). A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. Journal of the American Statistical Association 91, 1141-1151.
Sun, W. and Cai, T. T. (2009). Large-scale multiple testing under dependence. Journal of the Royal Statistical Society, Series B 71, 393-424.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289-300.
Chen, J., Tan, X., and Zhang, R. (2008). Inference for normal mixtures in mean and variance. Statistica Sinica 18, 443-465.
Nocedal, J. and Wright, S. (2006). Numerical Optimization, 2nd edition. New York: Springer.
Cai, T. and Sun, W. (2009). Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks. Journal of the American Statistical Association 104, 1467-1481.
Welch, B. L. (1947). The generalization of 'Student's' problem when several different population variances are involved. Biometrika 34, 28-35.
Zhang, X., Johnson, T. D., Little, R. J. A., and Cao, Y. (2008). Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation. The Annals of Applied Statistics 2, 736-755.
Zhang, C, Fan, J., and Yu, T. (2011). Multiple testing via FDR_L for large-scale image data. The Annals of Statistics 39, 613-642.
Winkler, G. (2003). Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edition. New York: Springer.
Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics 31, 2013-2035.
Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165-1188.
Wu, W. B. (2008). On false discovery control under dependence. The Annals of Statistics 36, 364-380.
Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 61, 265-285.
Ciuperca, G., Ridolfi, A., and Idier, J. (2003). Penalized maximum likelihood estimator for normal mixtures. Scandinavian Journal of Statistics 30, 45-59.
2009; 44
2009; 25
2002; 15
2007; 102
2000; 25
2013; 22
1995; 57
2008; 18
2013; 83
2009
2008; 36
1997
2006
1994; 49
2003
2001; 29
1999; 61
1996; 91
2002
2011; 39
2008; 2
2003; 30
2007; 34
2003; 31
1999
2004; 32
2004; 99
2010; 49
2002; 64
1977; 39
1947; 34
2009; 71
1984; 6
2014
2014; 142
2009; 104
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Dempster A. P. (e_1_2_9_14_1) 1977; 39
Garey L. J. (e_1_2_9_17_1) 2006
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
Chen J. (e_1_2_9_9_1) 2008; 18
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Nocedal J. (e_1_2_9_26_1) 2006
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. New York: Springer.
– reference: Welch, B. L. (1947). The generalization of 'Student's' problem when several different population variances are involved. Biometrika 34, 28-35.
– reference: Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics 31, 2013-2035.
– reference: Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 61, 265-285.
– reference: Magder, L. S. and Zeger, S. L., (1996). A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. Journal of the American Statistical Association 91, 1141-1151.
– reference: Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis, 3rd edition. New York: Springer.
– reference: Garey, L. J. (2006). Brodmann's Localisation in the Cerebral Cortex. New York: Springer.
– reference: Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912.
– reference: Roberts, G. O. and Smith A. F. M. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications 49, 207-216.
– reference: Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104.
– reference: Huang, L., Goldsmith, J., Reiss, P. T., Reich, D. S., and Crainiceanu, C. M. (2013). Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83, 210-223.
– reference: Bremaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer.
– reference: Cai, T. and Sun, W. (2009). Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks. Journal of the American Statistical Association 104, 1467-1481.
– reference: Sun, W. and Cai, T. T. (2009). Large-scale multiple testing under dependence. Journal of the Royal Statistical Society, Series B 71, 393-424.
– reference: Winkler, G. (2003). Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edition. New York: Springer.
– reference: Farcomeni, A. (2007). Some results on the control of the false discovery rate under dependence. Scandinavian Journal of Statistics 34, 275-297.
– reference: Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741.
– reference: Chandgotia, N., Han, G., Marcus, B., Meyerovitch, T., and Pavlov, R. (2014). One-dimensional Markov random fields, Markov chains and topological Markov fields. Proceedings of the American Mathematical Society 142, 227-242.
– reference: Wu, W. B. (2008). On false discovery control under dependence. The Annals of Statistics 36, 364-380.
– reference: Johnson, T. D., Liu, Z., Bartsch, A. J., and Nichols, T. E. (2013). A Bayesian non-parametric Potts model with application to pre-surgical FMRI data. Statistical Methods in Medical Research 22, 364-381.
– reference: Chen, J., Tan, X., and Zhang, R. (2008). Inference for normal mixtures in mean and variance. Statistica Sinica 18, 443-465.
– reference: Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870-878.
– reference: Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society, Series B 64, 499-517.
– reference: Zhang, C, Fan, J., and Yu, T. (2011). Multiple testing via FDR_L for large-scale image data. The Annals of Statistics 39, 613-642.
– reference: Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289-300.
– reference: Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165-1188.
– reference: Ciuperca, G., Ridolfi, A., and Idier, J. (2003). Penalized maximum likelihood estimator for normal mixtures. Scandinavian Journal of Statistics 30, 45-59.
– reference: Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. The Annals of Statistics 32, 1035-1061.
– reference: Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38.
– reference: Chumbley, J. R. and Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage 44, 62-70.
– reference: Chumbley, J., Worsley, K., Flandin, G., and Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage 49, 3057-3064.
– reference: Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide association studies via hidden Markov models. Bioinformatics 25, 2802-2808.
– reference: Nocedal, J. and Wright, S. (2006). Numerical Optimization, 2nd edition. New York: Springer.
– reference: Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25, 60-83.
– reference: Zhang, X., Johnson, T. D., Little, R. J. A., and Cao, Y. (2008). Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation. The Annals of Applied Statistics 2, 736-755.
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 18
  start-page: 443
  year: 2008
  end-page: 465
  article-title: Inference for normal mixtures in mean and variance
  publication-title: Statistica Sinica
– volume: 29
  start-page: 1165
  year: 2001
  end-page: 1188
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: The Annals of Statistics
– volume: 71
  start-page: 393
  year: 2009
  end-page: 424
  article-title: Large‐scale multiple testing under dependence
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 25
  start-page: 2802
  year: 2009
  end-page: 2808
  article-title: Multiple testing in genome‐wide association studies via hidden Markov models
  publication-title: Bioinformatics
– volume: 142
  start-page: 227
  year: 2014
  end-page: 242
  article-title: One‐dimensional Markov random fields, Markov chains and topological Markov fields
  publication-title: Proceedings of the American Mathematical Society
– year: 1999
  publication-title: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues
– volume: 39
  start-page: 613
  year: 2011
  end-page: 642
  article-title: Multiple testing via FDR_L for large‐scale image data
  publication-title: The Annals of Statistics
– volume: 25
  start-page: 60
  year: 2000
  end-page: 83
  article-title: On the adaptive control of the false discovery rate in multiple testing with independent statistics
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 34
  start-page: 275
  year: 2007
  end-page: 297
  article-title: Some results on the control of the false discovery rate under dependence
  publication-title: Scandinavian Journal of Statistics
– volume: 36
  start-page: 364
  year: 2008
  end-page: 380
  article-title: On false discovery control under dependence
  publication-title: The Annals of Statistics
– volume: 32
  start-page: 1035
  year: 2004
  end-page: 1061
  article-title: A stochastic process approach to false discovery control
  publication-title: The Annals of Statistics
– year: 2003
  publication-title: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods
– volume: 31
  start-page: 2013
  year: 2003
  end-page: 2035
  article-title: The positive false discovery rate: A Bayesian interpretation and the q‐value
  publication-title: The Annals of Statistics
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society, Series B
– year: 2014
– volume: 102
  start-page: 901
  year: 2007
  end-page: 912
  article-title: Oracle and adaptive compound decision rules for false discovery rate control
  publication-title: Journal of the American Statistical Association
– volume: 104
  start-page: 1467
  year: 2009
  end-page: 1481
  article-title: Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks
  publication-title: Journal of the American Statistical Association
– volume: 49
  start-page: 3057
  year: 2010
  end-page: 3064
  article-title: Topological FDR for neuroimaging
  publication-title: NeuroImage
– year: 2006
  publication-title: Brodmann's Localisation in the Cerebral Cortex
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 44
  start-page: 62
  year: 2009
  end-page: 70
  article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields
  publication-title: NeuroImage
– volume: 91
  start-page: 1141
  year: 1996
  end-page: 1151
  article-title: A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians
  publication-title: Journal of the American Statistical Association
– volume: 34
  start-page: 28
  year: 1947
  end-page: 35
  article-title: The generalization of ‘Student's’ problem when several different population variances are involved
  publication-title: Biometrika
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
– volume: 49
  start-page: 207
  year: 1994
  end-page: 216
  article-title: Simple conditions for the convergence of the Gibbs sampler and Metropolis‐Hastings algorithms
  publication-title: Stochastic Processes and their Applications
– volume: 99
  start-page: 96
  year: 2004
  end-page: 104
  article-title: Large‐scale simultaneous hypothesis testing: The choice of a null hypothesis
  publication-title: Journal of the American Statistical Association
– year: 1997
– volume: 61
  start-page: 265
  year: 1999
  end-page: 285
  article-title: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 22
  start-page: 364
  year: 2013
  end-page: 381
  article-title: A Bayesian non‐parametric Potts model with application to pre‐surgical FMRI data
  publication-title: Statistical Methods in Medical Research
– year: 2006
  publication-title: Numerical Optimization
– volume: 2
  start-page: 736
  year: 2008
  end-page: 755
  article-title: Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation
  publication-title: The Annals of Applied Statistics
– year: 2002
  publication-title: Introduction to Numerical Analysis
– volume: 30
  start-page: 45
  year: 2003
  end-page: 59
  article-title: Penalized maximum likelihood estimator for normal mixtures
  publication-title: Scandinavian Journal of Statistics
– volume: 64
  start-page: 499
  year: 2002
  end-page: 517
  article-title: Operating characteristics and extensions of the false discovery rate procedure
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 83
  start-page: 210
  year: 2013
  end-page: 223
  article-title: Bayesian scalar‐on‐image regression with application to association between intracranial DTI and cognitive outcomes
  publication-title: NeuroImage
– year: 2009
  publication-title: A First Course in Bayesian Statistical Methods
– ident: e_1_2_9_36_1
  doi: 10.1214/009053607000000730
– ident: e_1_2_9_5_1
  doi: 10.1111/1467-9868.00176
– volume: 18
  start-page: 443
  year: 2008
  ident: e_1_2_9_9_1
  article-title: Inference for normal mixtures in mean and variance
  publication-title: Statistica Sinica
– ident: e_1_2_9_2_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_9_3_1
  doi: 10.3102/10769986025001060
– ident: e_1_2_9_10_1
  doi: 10.1016/j.neuroimage.2008.05.021
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuroimage.2013.06.020
– ident: e_1_2_9_38_1
  doi: 10.1214/07-AOAS157
– ident: e_1_2_9_31_1
  doi: 10.1198/016214507000000545
– ident: e_1_2_9_21_1
  doi: 10.1214/009053604000000283
– ident: e_1_2_9_13_1
– ident: e_1_2_9_35_1
  doi: 10.1007/978-3-642-55760-6
– ident: e_1_2_9_12_1
  doi: 10.1111/1467-9469.00317
– year: 2006
  ident: e_1_2_9_17_1
  publication-title: Brodmann's Localisation in the Cerebral Cortex
– ident: e_1_2_9_25_1
  doi: 10.1080/01621459.1996.10476984
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_9_14_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_9_27_1
– ident: e_1_2_9_24_1
  doi: 10.1177/0962280212448970
– year: 2006
  ident: e_1_2_9_26_1
  publication-title: Numerical Optimization
– ident: e_1_2_9_20_1
  doi: 10.1111/1467-9868.00347
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1467-9469.2006.00530.x
– ident: e_1_2_9_28_1
  doi: 10.1016/0304-4149(94)90134-1
– ident: e_1_2_9_15_1
  doi: 10.1198/016214504000000089
– ident: e_1_2_9_19_1
  doi: 10.1006/nimg.2001.1037
– ident: e_1_2_9_33_1
  doi: 10.1093/bioinformatics/btp476
– ident: e_1_2_9_7_1
  doi: 10.1198/jasa.2009.tm08415
– ident: e_1_2_9_18_1
  doi: 10.1109/TPAMI.1984.4767596
– ident: e_1_2_9_22_1
  doi: 10.1007/978-0-387-92407-6
– ident: e_1_2_9_30_1
  doi: 10.1214/aos/1074290335
– ident: e_1_2_9_37_1
  doi: 10.1214/10-AOS848
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2009.10.090
– ident: e_1_2_9_6_1
  doi: 10.1007/978-1-4757-3124-8
– ident: e_1_2_9_8_1
  doi: 10.1090/S0002-9939-2013-11741-7
– ident: e_1_2_9_29_1
  doi: 10.1007/978-0-387-21738-3
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1467-9868.2008.00694.x
– ident: e_1_2_9_34_1
  doi: 10.1093/biomet/34.1-2.28
– ident: e_1_2_9_4_1
  doi: 10.1214/aos/1013699998
SSID ssj0009502
Score 2.2988424
Snippet Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and...
Summary Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring...
Summary Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring...
Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring voxels and...
Traditional voxel-level multiple testing procedures in neuroimaging, mostly p -value based, often ignore the spatial correlations among neighboring voxels and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 741
SubjectTerms Algorithms
Alzheimer disease
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
BIOMETRIC METHODOLOGY
biometry
Cognitive Dysfunction - diagnostic imaging
Computer Simulation
False discovery rate
Fluorodeoxyglucose F18
Generalized expectation-maximization algorithm
Humans
image analysis
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Ising model
Local significance index
Markov analysis
Markov chain
Markov Chains
Medical imaging
Models, Statistical
Neuroimaging - methods
Penalized likelihood
Positron-Emission Tomography - methods
Radiopharmaceuticals
Reproducibility of Results
risk
Sensitivity and Specificity
Title Multiple testing for neuroimaging via hidden Markov random field
URI https://api.istex.fr/ark:/67375/WNG-GGNJZTGN-1/fulltext.pdf
https://www.jstor.org/stable/24538869
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12329
https://www.ncbi.nlm.nih.gov/pubmed/26012881
https://www.proquest.com/docview/1712903715
https://www.proquest.com/docview/1713949624
https://www.proquest.com/docview/1746367450
https://pubmed.ncbi.nlm.nih.gov/PMC4579542
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UilAfvKxWo1VGFEEhyyYzk8mAD16wWwu7grS4CBIyk4xd2mbF3S3qr_ecyaW7Wgr6FpKzITM5l2-y3_kG4Ck38cBK68JcF2UoSsFDLCO4SuGioAWETjn1O4_Gyd6h2J_IyQa8bHthan2I7oMbRYbP1xTguZmvBDm1p_cJEFD3HpG1CBF9jFcUdwe1VDiRu0Q0abRJicZz_tO1anSFJvZHS0y8CHL-zZxcRbS-JO3egC_tYGomynF_uTB9--sPncf_He1NuN5gVfa6dq5bsFFWPbha7175swfXRp3k67wHWwRba9Xn2_Bq1PAU2YJUPKqvDLEx89qZ01O_LxI7m-bsiPRLKkb9QrMzhlWzmJ0yz6m7A4e77w7e7oXNXg2hTZTSoXaYDaTDjOEQkpQiN3kkpOGDAhEezxE2WmG15CpNXMxN4aTGM2nEU2Wd5Zpvw2Y1q8p7wAqTaCsw8YkiFaWz2hQD7fDA5S43iQvgefvOMtsImdN-GidZu6Chycr8ZAXwpLP9Vst3XGj1zL_6zgSHTYQ3JbNP42E2HI73Px8Mx1kUwLb3jc4wFlgw0gTvsNM6S9YkgXkWKfrIx1UkA3jcXcbwpf9k8qqcLb0N10InsbjMhlTdlJCDAO7W_nf-AAkhjBSfTK15ZmdA8uHrV6rpkZcRF1JpKeIAXnjHu2R-sjfvP4z80f1_MX4AWwgvZc3I24HNxfdl-RAh3MI88qH6G90eQUw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTYjxwKUwCAwwAiGBlCqJ7Th-47p2YwkS6kTFi5U4MatgKaLtBPx6fJw0a2GaBG9Rcholzrl8dj9_B-AJLaJAc238XJaVzypGfVtG7CyFshInEDKhuN85zeLhIdsf83HLzcG9MI0-RLfghpHh8jUGOC5Ir0Q57k_vIyKQF2ETW3pjA4M3H6IVzd2gEQtHehcLx606KRJ5Tn-7Vo82cWh_LKmJZ4HOv7mTq5jWFaXda03n1ZnTMkQuypf-Yl709a8_lB7_-32vw9UWrpKXjX_dgAtV3YNLTQPLnz24knaqr7MebCFybYSfb8KLtKUqkjkKedSfiYXHxMlnTo5dayRyMsnJEUqY1AS3DE1PiC2c5fSYOFrdLTjcfTt6PfTbdg2-joWQvjQ2IXBjk4axqKRieZGHjBc0KC3Io7lFjpppyalIYhPRojRc2jNJSBOhjaaSbsNGPa2rO0DKIpaa2dzHyoRVRsuiDKSxByY3eREbD54tP5rSrZY5ttT4qpZzGhws5QbLg8ed7bdGweNMq6fu23cm9rWR8ya4-pgN1GCQ7X8aDTIVerDtnKMzjJitGUls77Cz9BbV5oGZCgWu81ERcg8edZdtBOPfMnldTRfOhkom44idZ4PCboLxwIPbjQOePkCMICOxTybWXLMzQAXx9Sv15MgpiTMuJGeRB8-d550zPurV3vvUHd39F-OHcHk4Sg_UwV727h5sWbTJG4LeDmzMvy-q-xbRzYsHLm5_A8IgRWY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH-YG8r84MvptDo1oggKPdomaRrwg6932_SqyIaHIKFNG3foesPdDfWvN0_6sjsdA_1W2qelSZ-XX9JffgF4SPMo0FwbP5NF6bOSUd-WETtKoazAAYRMKK53HqXx1h7bGfPxCjxt18LU-hDdhBtGhsvXGOCHhVkIclye3kdAIM_BGotttCAk-hAtSO4GtVY4srtYOG7ESZHHc3LvUjlaw5790TITT8Ocf1MnFyGtq0mDy_C5bU1NRfnan8_yvv71h9Dj_zb3ClxqwCp5XnvXVVgpqx6cr7ev_NmDi6NO8_WoB-uIW2vZ52vwbNQQFckMZTyqL8SCY-LEMycHbmMkcjzJyD4KmFQEFwxNj4ktm8X0gDhS3XXYG7zefbnlN5s1-DoWQvrS2HTAjU0ZxmKSkmV5FjKe06CwEI9mFjdqpiWnIolNRPPCcGnPJCFNhDaaSroBq9W0Km8CKfJYamYzHysSVhot8yKQxh6YzGR5bDx43H4zpRslc9xQ45tqRzTYWcp1lgcPOtvDWr_jVKtH7tN3JrbZyHgTXH1Mh2o4THc-7Q5TFXqw4XyjM4yYrRhJbJ-w2TqLarLAkQoFzvJREXIP7neXbfziT5msKqdzZ0Mlk3HEzrJBWTfBeODBjdr_Tl4gRoiR2DcTS57ZGaB--PKVarLvdMQZF5KzyIMnzvHO6B_1YvvdyB3d-hfje3Dh_auBerudvrkN6xZq8pqdtwmrs-_z8o6Fc7P8rova3-F2RB4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+testing+for+neuroimaging+via+hidden+Markov+random+field&rft.jtitle=Biometrics&rft.au=Shu%2C+Hai&rft.au=Nan%2C+Bin&rft.au=Koeppe%2C+Robert&rft.date=2015-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=71&rft.issue=3&rft.spage=741&rft.epage=750&rft_id=info:doi/10.1111%2Fbiom.12329&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_GGNJZTGN_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon