The landscape of antibody binding in SARS-CoV-2 infection

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immu...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 19; no. 6; p. e3001265
Main Authors Heffron, Anna S., McIlwain, Sean J., Amjadi, Maya F., Baker, David A., Khullar, Saniya, Armbrust, Tammy, Halfmann, Peter J., Kawaoka, Yoshihiro, Sethi, Ajay K., Palmenberg, Ann C., Shelef, Miriam A., O’Connor, David H., Ong, Irene M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.06.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal’s policy and the authors of this manuscript have the following competing interests: The authors declare the following competing interests: A.S.H., S.J.M., D.A.B., M.F.A., S.K., M.A.S., D.H.O., and I.M.O are listed as the inventors on a patent filed that is related to findings in this study. Application: 63/080568, 63/083671. Title: IDENTIFICATION OF SARS-COV-2 EPITOPES DISCRIMINATING COVID-19 INFECTION FROM CONTROL AND METHODS OF USE. Application type: Provisional. Status: Filed. Country: United States. Filing date: September 18, 2020, September 25, 2020.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.3001265