APT‐weighted MRI: Techniques, current neuro applications, and challenging issues
Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer ima...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 50; no. 2; pp. 347 - 364 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.08.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo.
Level of Evidence: 3
Technical Efficacy Stage: 3
J. Magn. Reson. Imaging 2019;50:347–364. |
---|---|
AbstractList | Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo.
Level of Evidence: 3
Technical Efficacy Stage: 3
J. Magn. Reson. Imaging 2019;50:347–364. Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer (CEST) imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this paper, we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we will outline technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals invivo. Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364. Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo.Level of Evidence: 3Technical Efficacy Stage: 3J. Magn. Reson. Imaging 2019;50:347–364. Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364.Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364. |
Author | Jiang, Shanshan Heo, Hye‐Young Knutsson, Linda van Zijl, Peter C.M. Zhou, Jinyuan |
AuthorAffiliation | 1 Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA 3 Department of Medical Radiation Physics, Lund University, Lund, Sweden |
AuthorAffiliation_xml | – name: 1 Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA – name: 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA – name: 3 Department of Medical Radiation Physics, Lund University, Lund, Sweden |
Author_xml | – sequence: 1 givenname: Jinyuan surname: Zhou fullname: Zhou, Jinyuan email: jzhou2@jhmi.edu organization: Kennedy Krieger Institute – sequence: 2 givenname: Hye‐Young surname: Heo fullname: Heo, Hye‐Young organization: Kennedy Krieger Institute – sequence: 3 givenname: Linda surname: Knutsson fullname: Knutsson, Linda organization: Lund University – sequence: 4 givenname: Peter C.M. surname: van Zijl fullname: van Zijl, Peter C.M. organization: Kennedy Krieger Institute – sequence: 5 givenname: Shanshan surname: Jiang fullname: Jiang, Shanshan organization: Kennedy Krieger Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30663162$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/35d06584-f4d1-454b-9e76-53ca6bbc5577$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/35d06584-f4d1-454b-9e76-53ca6bbc5577$$DView record from Swedish Publication Index |
BookMark | eNqNkstu1DAUhiNURC-w4QFQJDYIkeJL7MQskKqqQNEgUDWsjxznzIxHHifYCaPu-gg8I0-CpzOtaAWIhS_S-c7vXz7_YbbnO49Z9pSSY0oIe71cBXvMpCzFg-yACsYKJmq5l-5E8ILWpNrPDmNcEkKUKsWjbJ8TKTmV7CC7OPky_Xn1Y412vhiwzT9dnL_Jp2gW3n4bMb7KzRgC-iH3OIYu133vrNGD7Xyqad_mZqGdQz-3fp7bGFPP4-zhTLuIT3bnUfb13dn09EMx-fz-_PRkUhhZcVEobGo9a1BxTWmtGTaC8xaJMoo1qEUliBK8VLzRNXJWaWpmLTeGKsZ1W7b8KNNb3bjGfmygD3alwyV02kLfhUE7CBhRB7MAN0JESNSte-CiJVLUJczKlkIpygYUVhIEN1o2jRGiqtIbk7--4cY-rWan_Z9yb7dySWuFrUkfG5LNO87vVLxdwLz7DlIyoahKAi92AqHbzGeAlY0GndMeuzECo5XitahpmdDn99BlNwafJgKMCUnSxliinv3u6NbKTUISQLaACV2MAWdg7HD9hcmgdUAJbEIImxDCdQhTy8t7LTeqf4TpFl5bh5f_IOFjyua25xci7O82 |
CitedBy_id | crossref_primary_10_2174_1573405619666230126124039 crossref_primary_10_1109_TMI_2020_3046460 crossref_primary_10_1007_s11064_024_04307_5 crossref_primary_10_1186_s12885_022_09205_z crossref_primary_10_1002_nbm_4699 crossref_primary_10_1002_mrm_28184 crossref_primary_10_1016_j_acra_2024_03_019 crossref_primary_10_3389_fnins_2025_1533799 crossref_primary_10_1007_s42058_020_00028_0 crossref_primary_10_1002_jmri_28287 crossref_primary_10_1016_j_nicl_2022_103121 crossref_primary_10_1053_j_sult_2021_07_003 crossref_primary_10_1186_s13244_021_01126_y crossref_primary_10_2147_JHC_S272535 crossref_primary_10_3390_ijms231710187 crossref_primary_10_3389_fonc_2022_822756 crossref_primary_10_1002_mrm_30134 crossref_primary_10_1097_RCT_0000000000001141 crossref_primary_10_1109_TBME_2024_3407092 crossref_primary_10_1016_j_mri_2021_11_015 crossref_primary_10_1016_j_acra_2024_12_054 crossref_primary_10_1002_mrm_27881 crossref_primary_10_1016_j_mri_2019_05_005 crossref_primary_10_3389_fonc_2021_698427 crossref_primary_10_1016_j_nicl_2019_102153 crossref_primary_10_3389_fnagi_2023_1266859 crossref_primary_10_1016_j_mri_2024_04_011 crossref_primary_10_3389_fphys_2023_1098959 crossref_primary_10_1007_s00330_024_11202_8 crossref_primary_10_1021_cbmi_3c00019 crossref_primary_10_32604_cmc_2023_031695 crossref_primary_10_3390_pharmaceutics14020451 crossref_primary_10_1016_j_jrras_2024_101043 crossref_primary_10_3389_fneur_2022_789355 crossref_primary_10_1002_mrm_29970 crossref_primary_10_1002_mrm_29173 crossref_primary_10_1002_nbm_4671 crossref_primary_10_1007_s11307_021_01607_y crossref_primary_10_3390_cancers14081907 crossref_primary_10_1007_s00330_021_08039_w crossref_primary_10_22630_MGV_2020_29_1_3 crossref_primary_10_3389_fneur_2019_01307 crossref_primary_10_1148_radiol_2020191376 crossref_primary_10_1002_jmri_29037 crossref_primary_10_3389_fmed_2024_1347267 crossref_primary_10_3389_fonc_2022_886968 crossref_primary_10_3390_biomedicines11092348 crossref_primary_10_1093_braincomms_fcae172 crossref_primary_10_1186_s13244_019_0771_1 crossref_primary_10_1002_nbm_4785 crossref_primary_10_1002_nbm_4662 crossref_primary_10_1148_rycan_2021200155 crossref_primary_10_1186_s40644_022_00515_w crossref_primary_10_1155_2020_6418343 crossref_primary_10_1007_s10334_021_00911_6 crossref_primary_10_1016_j_radi_2021_08_006 crossref_primary_10_1002_mrm_28513 crossref_primary_10_1016_j_mri_2023_06_005 crossref_primary_10_1016_j_mri_2023_06_006 crossref_primary_10_1016_j_mri_2023_06_003 crossref_primary_10_1016_j_mri_2024_01_006 crossref_primary_10_1016_j_mri_2023_06_002 crossref_primary_10_3389_fonc_2024_1402628 crossref_primary_10_1016_j_radonc_2021_07_010 crossref_primary_10_1055_a_1403_4895 crossref_primary_10_1002_mrm_28781 crossref_primary_10_1016_j_mri_2023_07_003 crossref_primary_10_1002_ima_23027 crossref_primary_10_1002_mrm_29878 crossref_primary_10_1016_j_wneu_2023_12_023 crossref_primary_10_1038_s41582_021_00510_y crossref_primary_10_1002_mrm_30056 crossref_primary_10_1148_radiol_2021210041 crossref_primary_10_1016_j_mri_2023_07_011 crossref_primary_10_3390_bioengineering10121399 crossref_primary_10_1016_j_mri_2023_07_014 crossref_primary_10_1002_mrm_29748 crossref_primary_10_1148_radiol_2021203766 crossref_primary_10_1002_mrm_29746 crossref_primary_10_1089_neur_2021_0064 crossref_primary_10_1002_mrm_28653 crossref_primary_10_3389_fradi_2023_1267615 crossref_primary_10_1016_j_mrl_2022_10_002 crossref_primary_10_1002_jmri_27212 crossref_primary_10_1002_mp_16256 crossref_primary_10_3389_fnins_2019_00520 crossref_primary_10_1016_j_brainresbull_2023_110793 crossref_primary_10_1016_j_jmr_2019_106648 crossref_primary_10_1038_s41598_020_64912_6 crossref_primary_10_3389_fonc_2023_1223598 crossref_primary_10_1002_jmri_29199 crossref_primary_10_1002_mrm_28565 crossref_primary_10_1002_mrm_29412 crossref_primary_10_1007_s00330_024_11000_2 crossref_primary_10_1002_mrm_30194 crossref_primary_10_3389_fneur_2021_707030 crossref_primary_10_1002_mrm_30075 crossref_primary_10_1007_s00259_021_05455_4 crossref_primary_10_3389_fonc_2021_640906 crossref_primary_10_3389_fnagi_2020_572421 crossref_primary_10_3390_ph14010011 crossref_primary_10_1007_s11011_023_01330_3 crossref_primary_10_1007_s00330_020_06985_5 crossref_primary_10_3390_ijms24043151 crossref_primary_10_1002_mrm_29408 crossref_primary_10_3389_fnins_2023_1137176 crossref_primary_10_1002_mrm_28313 crossref_primary_10_1016_j_acra_2023_09_005 crossref_primary_10_1002_mrm_28433 crossref_primary_10_1002_mrm_29643 crossref_primary_10_3389_fped_2022_996949 crossref_primary_10_1038_s41598_021_85168_8 crossref_primary_10_3389_fnins_2024_1442176 crossref_primary_10_1002_nbm_4906 crossref_primary_10_3389_fnins_2022_876587 crossref_primary_10_1016_j_mri_2024_06_004 crossref_primary_10_1002_nbm_4731 crossref_primary_10_1002_jmri_28204 crossref_primary_10_1002_nbm_4850 crossref_primary_10_1016_j_jmr_2019_07_034 crossref_primary_10_1186_s12967_025_06153_7 crossref_primary_10_3390_cancers16173014 crossref_primary_10_1002_nbm_4176 crossref_primary_10_1021_acschemneuro_9b00334 crossref_primary_10_30629_0023_2149_2023_101_4_5_235_240 crossref_primary_10_1002_jmri_29099 crossref_primary_10_1002_nbm_4734 crossref_primary_10_1177_19714009211002766 crossref_primary_10_3390_cancers16050888 crossref_primary_10_1002_mrm_27937 crossref_primary_10_1007_s00330_024_11172_x crossref_primary_10_3389_fneur_2021_733323 crossref_primary_10_1002_jmri_27105 crossref_primary_10_1002_mrm_28573 crossref_primary_10_1016_j_clinimag_2021_09_002 crossref_primary_10_1002_nbm_4168 crossref_primary_10_1002_nbm_4960 crossref_primary_10_1002_mrm_28699 crossref_primary_10_3390_ijms222111559 crossref_primary_10_1007_s00234_022_02947_4 crossref_primary_10_1016_j_acra_2024_09_043 crossref_primary_10_1007_s00330_024_11220_6 crossref_primary_10_52396_JUSTC_2023_0027 crossref_primary_10_3390_ijms24076627 crossref_primary_10_1002_mrm_30440 crossref_primary_10_3389_fnins_2024_1424316 crossref_primary_10_1002_jmri_28224 crossref_primary_10_1002_nbm_4710 crossref_primary_10_1002_mrm_29211 crossref_primary_10_1002_mrm_29574 crossref_primary_10_1016_j_heliyon_2024_e38062 crossref_primary_10_1016_j_mri_2022_11_004 crossref_primary_10_1016_j_radonc_2023_109694 crossref_primary_10_1002_mrm_29570 crossref_primary_10_1097_RCT_0000000000001699 crossref_primary_10_1002_nbm_4717 crossref_primary_10_1089_neu_2023_0654 crossref_primary_10_3390_nano13152163 crossref_primary_10_1002_nbm_4955 crossref_primary_10_1002_nbm_4711 crossref_primary_10_3389_fnagi_2021_791679 crossref_primary_10_1016_j_mri_2023_12_002 crossref_primary_10_1016_j_neuroimage_2020_117165 crossref_primary_10_3390_diagnostics12020490 crossref_primary_10_1016_j_crad_2021_12_017 crossref_primary_10_1002_nbm_4719 crossref_primary_10_1016_j_mri_2023_04_001 crossref_primary_10_1002_nbm_4262 crossref_primary_10_1002_jmri_26710 crossref_primary_10_1038_s41551_021_00809_7 crossref_primary_10_1007_s00330_020_07243_4 crossref_primary_10_1002_mrm_29440 crossref_primary_10_1016_j_mric_2021_06_012 crossref_primary_10_1002_nbm_4944 crossref_primary_10_1002_mrm_29448 crossref_primary_10_1002_nbm_4824 crossref_primary_10_1007_s11307_020_01565_x crossref_primary_10_3389_fonc_2020_562049 crossref_primary_10_1002_neo2_70002 crossref_primary_10_4103_IJNO_IJNO_403_21 crossref_primary_10_1007_s00261_024_04768_w crossref_primary_10_1002_mrm_30460 crossref_primary_10_1186_s12967_023_04451_6 crossref_primary_10_1097_PPO_0000000000000545 crossref_primary_10_1002_mrm_30228 crossref_primary_10_1016_j_ejrad_2020_109466 crossref_primary_10_1002_mrm_29471 crossref_primary_10_1007_s00330_020_07122_y crossref_primary_10_1007_s00330_020_07397_1 crossref_primary_10_3390_brainsci12010053 crossref_primary_10_1002_mrm_28825 crossref_primary_10_1002_jmri_29333 crossref_primary_10_1002_nbm_4778 crossref_primary_10_3390_cancers14153771 crossref_primary_10_1002_nbm_5294 crossref_primary_10_1016_j_mri_2024_02_015 crossref_primary_10_2463_mrms_tn_2024_0069 crossref_primary_10_3389_fonc_2021_783544 crossref_primary_10_1002_mrm_30458 crossref_primary_10_2478_raon_2023_0051 crossref_primary_10_3390_tomography8040165 crossref_primary_10_3390_cancers15174311 crossref_primary_10_1259_bjro_20230025 crossref_primary_10_1002_jmri_27977 crossref_primary_10_1016_j_mri_2021_02_006 crossref_primary_10_1002_mrm_30241 crossref_primary_10_1016_j_jchemneu_2021_101944 crossref_primary_10_1097_RCT_0000000000001378 crossref_primary_10_1002_mrm_30249 crossref_primary_10_1002_mrm_27875 crossref_primary_10_1038_s41598_019_44820_0 crossref_primary_10_1002_jmri_29598 crossref_primary_10_1007_s11307_019_01382_x crossref_primary_10_1002_mrm_29937 crossref_primary_10_1021_acschemneuro_2c00494 crossref_primary_10_1002_mrm_29480 crossref_primary_10_3389_fphys_2021_793741 crossref_primary_10_1016_j_nicl_2021_102737 crossref_primary_10_1002_mrm_30112 crossref_primary_10_1002_jmri_28379 crossref_primary_10_1002_jmri_29468 crossref_primary_10_1002_mrm_29243 crossref_primary_10_1002_nbm_4983 crossref_primary_10_1002_mrm_29241 crossref_primary_10_1002_nbm_4626 crossref_primary_10_1002_jmri_28013 crossref_primary_10_1002_nbm_4744 crossref_primary_10_1002_jmri_29587 crossref_primary_10_1016_j_heliyon_2024_e32699 |
Cites_doi | 10.1007/s00330-016-4477-1 10.1002/nbm.3934 10.1016/j.bbi.2017.04.019 10.1002/mrm.20989 10.1002/jmri.10395 10.1002/mrm.10367 10.1002/nbm.3147 10.1002/nbm.3054 10.1002/mrm.26131 10.1007/s11307-015-0828-6 10.1007/s00330-015-3805-1 10.1007/s00723-011-0306-5 10.1063/1.1734121 10.1002/mrm.26799 10.1006/jmre.1999.1956 10.1007/s11307-017-1154-y 10.1002/mrm.10651 10.1038/nm.2682 10.1016/j.neuroimage.2011.08.014 10.1177/0271678X17700913 10.1016/j.neuroimage.2016.07.025 10.4103/0366-6999.151658 10.1002/mrm.23310 10.1016/j.wneu.2018.05.100 10.1148/radiology.211.3.r99jn46791 10.1200/JCO.2009.26.3541 10.1016/j.neuroimage.2011.11.091 10.1093/brain/awp282 10.1007/s00330-017-5182-4 10.1002/mrm.20408 10.1016/j.neuroimage.2010.02.050 10.1002/mrm.27363 10.1016/j.pnmrs.2006.01.001 10.1002/mrm.21714 10.1002/mrm.25690 10.1212/WNL.59.6.947 10.1093/neuonc/noy073 10.1002/nbm.2792 10.1007/s00330-016-4328-0 10.3389/fnagi.2015.00198 10.1002/mrm.27221 10.1002/mrm.24474 10.1007/s00330-015-3972-0 10.1002/mrm.24284 10.1002/mrm.26307 10.1002/nbm.3048 10.1038/bjc.1991.326 10.1002/nbm.3850 10.1016/j.mri.2013.07.009 10.1002/mrm.26736 10.1056/NEJMra1401483 10.1016/j.jmr.2011.05.001 10.1148/radiol.2015142979 10.1038/jcbfm.2014.12 10.1097/00004647-199601000-00006 10.1371/journal.pone.0155925 10.1002/mrm.24560 10.1371/journal.pone.0169292 10.1177/0271678X17690165 10.1002/cmmi.383 10.1002/mrm.1910400105 10.1002/mrm.24850 10.1002/mrm.24450 10.1016/j.neuroimage.2014.05.036 10.1002/nbm.3879 10.1093/neuonc/not158 10.1016/j.neuroimage.2013.03.047 10.1200/JCO.2017.72.7636 10.1073/pnas.1323855111 10.1007/s00330-016-4261-2 10.1002/mrm.26133 10.1002/mrm.25795 10.1002/nbm.3216 10.1007/s00330-017-4732-0 10.1088/0031-9155/58/22/R221 10.1002/mrm.22750 10.1002/mrm.20048 10.3174/ajnr.A5301 10.1158/1078-0432.CCR-16-2265 10.1002/nbm.3075 10.1002/mrm.24639 10.1038/srep45696 10.1002/mrm.21181 10.1002/mrm.25277 10.1016/j.neuroimage.2014.03.040 10.1016/j.neuroimage.2017.06.007 10.1007/s11060-012-0974-5 10.1007/s40134-013-0010-3 10.1002/mrm.24770 10.3389/fneur.2017.00067 10.1007/s11307-017-1136-0 10.1016/j.neuroimage.2015.02.040 10.1002/jmri.24067 10.1177/0271678X17721830 10.1002/mrm.21873 10.1016/S0896-6273(03)00568-3 10.1227/01.NEU.0000249209.11967.CB 10.1038/nm907 10.1002/mrm.24822 10.1002/mrm.22761 10.1002/mrm.26820 10.1146/annurev.bioeng.9.060906.151929 10.1007/s00330-017-4962-1 10.1038/nm.2268 10.1002/mrm.21712 10.1002/jmri.25159 10.1002/mrm.24315 10.1016/j.ijrobp.2011.12.087 10.1002/mrm.21387 10.1016/j.neuroimage.2017.04.045 10.1002/mrm.26322 10.1007/s11060-014-1715-8 10.1002/mrm.22628 10.1093/brain/awu374 10.1016/j.ejca.2017.06.009 10.1074/mcp.M116.063883 10.1002/mrm.25000 10.1007/s12975-011-0110-4 10.1002/mrm.10398 10.1002/mrm.24784 10.1007/s11307-012-0563-1 10.1002/mrm.22193 10.1093/neuonc/nov307 10.1002/mrm.23141 10.1002/jmri.25838 10.1073/pnas.0707666105 10.1093/neuonc/not245 10.1002/mrm.22912 10.1007/s00401-016-1545-1 10.1002/mrm.25581 10.1038/nature06917 10.1002/mrm.22862 10.1002/mrm.22891 10.1002/mrm.26924 10.1002/mrm.26141 10.1002/nbm.1216 10.1038/nm.2615 10.1002/mrm.25873 10.1007/s00330-017-4867-z 10.1007/s00330-014-3241-7 10.3389/fnins.2017.00489 10.1002/mrm.26264 10.1002/jmri.25597 10.1016/j.jmr.2012.11.024 10.1038/sj.jcbfm.9600424 10.1016/j.jmr.2011.12.012 10.1002/mrm.22546 10.1002/mrm.26470 |
ContentType | Journal Article |
Copyright | 2019 International Society for Magnetic Resonance in Medicine 2019 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2019 International Society for Magnetic Resonance in Medicine – notice: 2019 International Society for Magnetic Resonance in Medicine. |
CorporateAuthor | Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Medical Radiation Physics, Lund MR Physics Medicinsk strålningsfysik, Lund |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Medicinsk strålningsfysik, Lund – name: Lund University – name: MR Physics – name: Medical Radiation Physics, Lund – name: Faculty of Science – name: Lunds universitet |
DBID | AAYXX CITATION NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM ADTPV AOWAS D95 |
DOI | 10.1002/jmri.26645 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 364 |
ExternalDocumentID | oai_portal_research_lu_se_publications_35d06584_f4d1_454b_9e76_53ca6bbc5577 oai_lup_lub_lu_se_35d06584_f4d1_454b_9e76_53ca6bbc5577 PMC6625919 30663162 10_1002_jmri_26645 JMRI26645 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: P41EB015909; R01EB009731; R01EB015032 – fundername: Swedish Cancer Society funderid: CAN 2015/251 – fundername: National Cancer Institute funderid: R01CA166171; R01CA228188; R21CA227783 – fundername: National Institute of Neurological Disorders and Stroke funderid: UG3NS106937 – fundername: Forskningsrådet om Hälsa, Arbetsliv och Välfärd funderid: 2015‐04170; 2017‐00995 – fundername: Hjärnfonden funderid: FO2017‐0236 – fundername: NIBIB NIH HHS grantid: R01 EB015032 – fundername: NCI NIH HHS grantid: R01 CA166171 – fundername: NCI NIH HHS grantid: R21 CA227783 – fundername: NINDS NIH HHS grantid: UG3 NS106937 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NIBIB NIH HHS grantid: R01 EB009731 – fundername: NCI NIH HHS grantid: R01 CA228188 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 5PM ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c6735-9eb8afbe93a118a2eb533de09c92bea5750953493ba8e327a1cfd3cc1923ad4d3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Aug 22 03:13:50 EDT 2025 Thu Jul 03 05:15:18 EDT 2025 Thu Aug 21 18:13:13 EDT 2025 Fri Jul 11 14:23:32 EDT 2025 Fri Jul 25 12:24:28 EDT 2025 Wed Feb 19 02:30:44 EST 2025 Tue Jul 01 03:56:41 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Wed Jan 22 16:41:09 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | CEST imaging brain tumor APT-weighted imaging molecular imaging stroke |
Language | English |
License | 2019 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6735-9eb8afbe93a118a2eb533de09c92bea5750953493ba8e327a1cfd3cc1923ad4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6625919 |
PMID | 30663162 |
PQID | 2256022522 |
PQPubID | 1006400 |
PageCount | 18 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_35d06584_f4d1_454b_9e76_53ca6bbc5577 swepub_primary_oai_lup_lub_lu_se_35d06584_f4d1_454b_9e76_53ca6bbc5577 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6625919 proquest_miscellaneous_2179385814 proquest_journals_2256022522 pubmed_primary_30663162 crossref_citationtrail_10_1002_jmri_26645 crossref_primary_10_1002_jmri_26645 wiley_primary_10_1002_jmri_26645_JMRI26645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 83 2013; 69 2013; 1 2015; 73 2018; 168 2015; 74 2014; 27 1976 2013; 70 2014; 24 2008; 105 2012; 18 2003; 50 2013; 8 2017; 157 2016; 141 2018; 47 2013; 58 2015; 138 2010; 28 2017; 77 2017; 78 2014; 16 2016; 278 2011; 66 2003; 49 2011; 65 2008; 21 2007; 60 1999; 211 2012; 25 2014; 95 2010; 5 2018; 31 2018; 38 2014; 99 2016; 44 2017; 64 2018; 28 2009; 63 2006; 56 2013; 229 2009; 61 2015; 122 2003; 39 2015; 128 2016; 18 1996; 16 2018; 20 2016; 11 2012; 110 2004; 51 2013; 77 2018; 116 1991; 64 2015; 112 2006; 48 2016; 26 2014; 34 2010; 51 2012; 42 2014; 32 2012; 60 2017; 7 2002; 59 2017; 8 2017; 46 2016; 76 2016; 75 2018; 80 2003; 18 2012; 59 2011; 17 1998; 40 2010; 64 2013; 15 2017; 37 2017; 38 2017; 35 2003; 9 2018; 378 2012; 68 2012; 215 2012; 67 2008; 60 1963; 39 2018; 79 2007; 27 2012; 83 2015; 17 2011 2010 2017; 27 2017; 23 2008; 10 2014; 111 2015; 7 2011; 211 2007; 57 2007; 58 2015; 28 2012; 3 2013; 38 2017; 16 2017; 11 2017; 12 2010; 133 2018 2005; 53 2000; 143 2008; 452 2014; 72 2014; 71 2016; 131 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_146_1 Zhou J (e_1_2_7_98_1) 2013; 8 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_147_1 Jiang S (e_1_2_7_25_1) 2018 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 Dixon WT (e_1_2_7_43_1) 2009; 63 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 Astrup J (e_1_2_7_111_1) 1976 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 70 start-page: 556 year: 2013 end-page: 567 article-title: Quantitative Bayesian model‐based analysis of amide proton transfer MRI publication-title: Magn Reson Med – volume: 39 start-page: 889 year: 2003 end-page: 909 article-title: Parkinson's disease: Mechanisms and models publication-title: Neuron – volume: 211 start-page: 149 year: 2011 end-page: 155 article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian‐line‐fit analysis of z‐spectra publication-title: J Magn Reson – volume: 78 start-page: 1110 year: 2017 end-page: 1120 article-title: Chemical exchange saturation transfer for predicting response to stereotactic radiosurgery in human brain metastasis publication-title: Magn Reson Med – volume: 95 start-page: 22 year: 2014 end-page: 28 article-title: Concurrent saturation transfer contrast in in vivo brain by a uniform magnetization transfer MRI publication-title: NeuroImage – volume: 27 start-page: 3181 year: 2017 end-page: 3189 article-title: Amide proton transfer imaging to discriminate between low‐ and high‐grade gliomas: Added value to apparent diffusion coefficient and relative cerebral blood volume publication-title: Eur Radiol – volume: 48 start-page: 109 year: 2006 end-page: 136 article-title: Chemical exchange saturation transfer imaging and spectroscopy publication-title: Progr NMR Spectr – volume: 49 start-page: 440 year: 2003 end-page: 449 article-title: Mechanism of magnetization transfer during on‐resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids publication-title: Magn Reson Med – volume: 77 start-page: 855 year: 2017 end-page: 863 article-title: Quantitative assessment of the effects of water proton concentration and water T1 changes on amide proton transfer (APT) and nuclear overhauser enhancement (NOE) MRI: The origin of the APT imaging signal in brain tumor publication-title: Magn Reson Med – volume: 211 start-page: 791 year: 1999 end-page: 798 article-title: Glial neoplasms: Dynamic contrast‐enhanced T2*‐weighted MR imaging publication-title: Radiology – volume: 44 start-page: 456 year: 2016 end-page: 462 article-title: Applying amide proton transfer‐weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas publication-title: J Magn Reson Imaging – start-page: 710 year: 2011 – volume: 15 start-page: 114 year: 2013 end-page: 122 article-title: Three‐dimensional turbo‐spin‐echo amide proton transfer MR imaging at 3‐Tesla and its application to high‐grade human brain tumors publication-title: Mol Imaging Biol – volume: 77 start-page: 2225 year: 2017 end-page: 2238 article-title: Chemical exchange saturation transfer (CEST) imaging with fast variably‐accelerated sensitivity encoding (vSENSE) publication-title: Magn Reson Med – volume: 9 start-page: 1085 year: 2003 end-page: 1090 article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI publication-title: Nat Med – volume: 122 start-page: 339 year: 2015 end-page: 348 article-title: Grading glial tumors with amide proton transfer MR imaging: Different analytical approaches publication-title: J Neuro Oncol – volume: 215 start-page: 56 year: 2012 end-page: 63 article-title: Isolating chemical exchange saturation transfer contrast from magnetization transfer asymmetry under two‐frequency rf irradiation publication-title: J Magn Reson – volume: 83 start-page: 9 year: 2017 end-page: 18 article-title: Amide proton transfer‐weighted MR image‐guided stereotactic biopsy in patients with newly diagnosed gliomas publication-title: Eur J Cancer – volume: 17 start-page: 130 year: 2011 end-page: 134 article-title: Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides publication-title: Nat Med – volume: 18 start-page: 530 year: 2003 end-page: 536 article-title: Magnetic resonance imaging‐guided proteomics of human glioblastoma multiforme publication-title: J Magn Reson Imag – volume: 27 start-page: 1129 year: 2007 end-page: 1136 article-title: Detection of the ischemic penumbra using pH‐weighted MRI publication-title: J Cereb Blood Flow Metab – volume: 64 start-page: 425 year: 1991 end-page: 427 article-title: Are cancer cells acidic? publication-title: Br J Cancer – volume: 60 start-page: 17 year: 2007 end-page: 28 article-title: The dopaminergic nigrostriatal system and Parkinson's disease: Molecular events in development, disease, and cell death, and new therapeutic strategies publication-title: Neurosurgery – volume: 77 start-page: 2272 year: 2017 end-page: 2279 article-title: Amide proton transfer imaging of brain tumors using a self‐corrected 3D fast spin‐echo Dixon method: Comparison with separate B0 correction publication-title: Magn Reson Med – volume: 7 start-page: 45696 year: 2017 article-title: Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: A comparative study with susceptibility weighted imaging publication-title: Sci Rep – volume: 31 start-page: e3850 year: 2018 article-title: Differentiating the histologic grades of gliomas preoperatively using amide proton transfer‐weighted (APTW) and intravoxel incoherent motion MRI publication-title: NMR Biomed – volume: 16 start-page: 856 year: 2014 end-page: 867 article-title: Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model publication-title: Neuro Oncol – volume: 66 start-page: 831 year: 2011 end-page: 838 article-title: Development of chemical exchange saturation transfer at 7T publication-title: Magn Reson Med – volume: 58 start-page: R221 year: 2013 end-page: 2R69 article-title: Chemical exchange saturation transfer (CEST) and MR Z‐spectroscopy in vivo: A review of theoretical approaches and methods publication-title: Phys Med Biol – volume: 32 start-page: 41 year: 2014 end-page: 47 article-title: Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: Accuracy of B field Inhomogeneity corrections with gradient echo method publication-title: Magn Reson Imaging – volume: 37 start-page: 3422 year: 2017 end-page: 3432 article-title: Amide proton transfer‐weighted MRI detection of traumatic brain injury in rats publication-title: J Cereb Blood Flow Metab – year: 2018 article-title: Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation‐compensated multi‐pool CEST MRI at 7.0 Tesla publication-title: Neuro Oncol – volume: 141 start-page: 242 year: 2016 end-page: 249 article-title: pH‐sensitive MRI demarcates graded tissue acidification during acute stroke — pH specificity enhancement with magnetization transfer and relaxation‐normalized amide proton transfer (APT) MRI publication-title: NeuroImage – volume: 11 start-page: 489 year: 2017 article-title: Chemical exchange saturation transfer MRI signal loss of the substantia nigra as an imaging biomarker to evaluate the diagnosis and serverity of Parkinson's disease publication-title: Front Neurosci – volume: 27 start-page: 240 year: 2014 end-page: 252 article-title: Inverse Z‐spectrum analysis for spillover‐, MT‐, and T1‐corrected steady‐state pulsed CEST‐MRI — application to pH‐weighted MRI of acute stroke publication-title: NMR Biomed – volume: 26 start-page: 1792 year: 2016 end-page: 1800 article-title: Chemical exchange saturation transfer (CEST) MR technique for in‐vivo liver imaging at 3.0 Tesla publication-title: Eur Radiol – volume: 80 start-page: 1352 year: 2018 end-page: 1363 article-title: Chemical exchange saturation transfer fingerprinting for exchange rate quantification publication-title: Magn Reson Med – volume: 74 start-page: 42 year: 2015 end-page: 50 article-title: Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI publication-title: Magn Reson Med – volume: 61 start-page: 1441 year: 2009 end-page: 1450 article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments publication-title: Magn Reson Med – volume: 70 start-page: 1070 year: 2013 end-page: 1081 article-title: Quantitative characterization of nuclear Overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla publication-title: Magn Reson Med – volume: 66 start-page: 1033 year: 2011 end-page: 1041 article-title: Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T publication-title: Magn Reson Med – volume: 77 start-page: 114 year: 2013 end-page: 124 article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T publication-title: NeuroImage – volume: 26 start-page: 4390 year: 2016 end-page: 4403 article-title: Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma publication-title: Eur Radiol – start-page: 338 year: 2010 – volume: 16 start-page: 39 year: 2017 end-page: 56 article-title: Quantitative proteomics reveals fundamental regulatory differences in oncogenic HRAS and isocitrate dehydrogenase (IDH1) driven astrocytoma publication-title: Mol Cell Proteomics – volume: 46 start-page: 732 year: 2017 end-page: 739 article-title: Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors publication-title: J Magn Reson Imaging – volume: 65 start-page: 1620 year: 2011 end-page: 1629 article-title: Optimization of pulse train presaturation for CEST imaging in clinical scanners publication-title: Magn Reson Med – volume: 75 start-page: 1630 year: 2016 end-page: 1639 article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla publication-title: Magn Reson Med – volume: 42 start-page: 393 year: 2012 end-page: 402 article-title: A simple model for understanding the origin of the amide proton transfer MRI signal in tissue publication-title: Appl Magn Reson – volume: 111 start-page: 4542 year: 2014 end-page: 4527 article-title: In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma publication-title: Proc Natl Acad Sci U S A – volume: 378 start-page: 169 year: 2018 end-page: 180 article-title: Multiple sclerosis publication-title: N Engl J Med – volume: 64 start-page: 344 year: 2017 end-page: 353 article-title: Using functional and molecular MRI techniques to detect neuroinflammation and neuroprotection after traumatic brain injury publication-title: Brain Behav Immun – volume: 76 start-page: 136 year: 2016 end-page: 144 article-title: Highly accelerated chemical exchange saturation transfer (CEST) measurements with linear algebraic modeling publication-title: Magn Reson Med – volume: 143 start-page: 79 year: 2000 end-page: 87 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J Magn Reson – volume: 77 start-page: 1853 year: 2017 end-page: 1865 article-title: Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging publication-title: Magn Reson Med – volume: 67 start-page: 1579 year: 2012 end-page: 1589 article-title: In vivo 3D whole‐brain pulsed steady state chemical exchange saturation transfer at 7T publication-title: Magn Reson Med – volume: 138 start-page: 36 year: 2015 end-page: 42 article-title: Identifying the ischaemic penumbra using pH‐weighted magnetic resonance imaging publication-title: Brain – volume: 39 start-page: 2892 year: 1963 end-page: 2901 article-title: Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance publication-title: J Chem Phys – volume: 71 start-page: 1798 year: 2014 end-page: 1812 article-title: Variable delay multi‐pulse train for fast chemical exchange saturation transfer and relayed‐nuclear overhauser enhancement MRI publication-title: Magn Reson Med – volume: 40 start-page: 36 year: 1998 end-page: 42 article-title: Proton NMR spectroscopy of solvent‐saturable resonance: A new approach to study pH effects in situ publication-title: Magn Reson Med – year: 2018 article-title: Identifying recurrent malignant glioma after treatment using amide proton transfer‐weighted MR imaging: A validation study with image‐guided stereotactic biopsy publication-title: Clin Cancer Res – volume: 68 start-page: 1228 year: 2012 end-page: 1233 article-title: Keyhole chemical exchange saturation transfer publication-title: Magn Reson Med – volume: 27 start-page: 4516 year: 2017 end-page: 4524 article-title: Applying protein‐based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma publication-title: Eur Radiol – volume: 79 start-page: 2766 year: 2018 end-page: 2772 article-title: A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH publication-title: Magn Reson Med – volume: 73 start-page: 1615 year: 2015 end-page: 1622 article-title: Observation of true and pseudo NOE signals using CEST‐MRI and CEST‐MRS sequences with and without lipid suppression publication-title: Magn Reson Med – volume: 70 start-page: 216 year: 2013 end-page: 224 article-title: Amide proton transfer imaging of the breast at 3 T: Establishing reproducibility and possible feasibility assessing chemotherapy response publication-title: Magn Reson Med – volume: 83 start-page: E431 year: 2012 end-page: E436 article-title: Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain publication-title: Int J Radiat Oncol Biol Phys – volume: 7 start-page: 198 year: 2015 article-title: Chemical exchange saturation transfer MR imaging is superior to diffusion‐tensor imaging in the diagnosis and severity evaluation of Parkinson's disease: A study on substantia nigra and striatum publication-title: Front Aging Neurosci – volume: 278 start-page: 514 year: 2016 end-page: 523 article-title: Pre‐ and posttreatment glioma: Comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation publication-title: Radiology – volume: 8 start-page: 67 year: 2017 article-title: Evolution of cerebral ischemia assessed by amide proton transfer‐weighted MRI publication-title: Front Neurol – volume: 11 start-page: e0155925 year: 2016 article-title: Amide proton transfer imaging of diffuse gliomas: Effect of saturation pulse length in parallel transmission‐based technique publication-title: PLoS One – volume: 18 start-page: 624 year: 2012 end-page: 629 article-title: 2‐Hydroxyglutarate detection by magnetic resonance spectroscopy in subjects with IDH‐mutated gliomas publication-title: Nat Med – volume: 23 start-page: 3667 year: 2017 end-page: 3675 article-title: Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer publication-title: Clin Cancer Res – volume: 18 start-page: 302 year: 2012 end-page: 306 article-title: Magnetic resonance imaging of glutamate publication-title: Nat Med – volume: 133 start-page: 172 year: 2010 end-page: 188 article-title: Brain alpha‐synuclein accumulation in multiple system atrophy, Parkinson's disease and progressive supranuclear palsy: A comparative investigation publication-title: Brain – volume: 8 start-page: 308 year: 2013 end-page: 309 article-title: Response assessment of human brain tumors using amide proton transfer imaging at 3T publication-title: Contrast Media Mol Imaging – volume: 47 start-page: 11 year: 2018 end-page: 27 article-title: Clinical applications of chemical exchange saturation transfer (CEST) MRI publication-title: J Magn Reson Imaging – volume: 63 start-page: 253 year: 2009 end-page: 256 article-title: Alsop DC. A multislice gradient echo pulse sequence for CEST imaging publication-title: Magn Reson Med – volume: 56 start-page: 585 year: 2006 end-page: 592 article-title: Amide proton transfer imaging of human brain tumors at 3T publication-title: Magn Reson Med – volume: 77 start-page: 779 year: 2017 end-page: 786 article-title: Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques publication-title: Magn Reson Med – volume: 157 start-page: 341 year: 2017 end-page: 350 article-title: Enhancing sensitivity of pH‐weighted MRI with combination of amide and guanidyl CEST publication-title: NeuroImage – volume: 72 start-page: 1113 year: 2014 end-page: 1122 article-title: Amide proton transfer imaging of high intensity focused ultrasound‐treated tumor tissue publication-title: Magn Reson Med – volume: 27 start-page: 163 year: 2014 end-page: 174 article-title: Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI publication-title: NMR Biomed – volume: 168 start-page: 222 year: 2018 end-page: 241 article-title: Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field‐dependent saturation spectrum publication-title: NeuroImage – volume: 57 start-page: 647 year: 2007 end-page: 653 article-title: Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia publication-title: Magn Reson Med – volume: 105 start-page: 2266 year: 2008 end-page: 2270 article-title: Assessment of glycosaminoglycan concentration in vivo by chemical exchange‐dependent saturation transfer (gagCEST) publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 473 year: 2018 end-page: 481 article-title: Applying amide proton transfer MR imaging to hybrid brain PET/MR: Concordance with gadolinium enhancement and added value to [(18)F]FDG PET publication-title: Mol Imaging Biol – volume: 79 start-page: 806 year: 2018 end-page: 814 article-title: Amide proton transfer CEST of the cervical spinal cord in multiple sclerosis patients at 3T publication-title: Magn Reson Med – volume: 1 start-page: 102 year: 2013 end-page: 114 article-title: Chemical exchange saturation transfer (CEST) imaging: Description of technique and potential clinical applications publication-title: Curr Radiol Reports – volume: 20 start-page: 623 year: 2018 end-page: 631 article-title: Improved differentiation of low‐grade and high‐grade gliomas and detection of tumor proliferation using APT contrast fitted from Z‐spectrum publication-title: Mol Imaging Biol – volume: 28 start-page: 1 year: 2015 end-page: 8 article-title: CEST signal at 2ppm (CEST@2ppm) from Z‐spectral fitting correlates with creatine distribution in brain tumor publication-title: NMR Biomed – volume: 16 start-page: 441 year: 2014 end-page: 448 article-title: Amide proton transfer imaging of adult diffuse gliomas: Correlation with histopathological grades publication-title: Neuro Oncol – volume: 60 start-page: 834 year: 2008 end-page: 841 article-title: Investigation of optimizing and translating pH‐sensitive pulsed‐chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner publication-title: Magn Reson Med – volume: 27 start-page: 578 year: 2017 end-page: 588 article-title: Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: Comparisons with diffusion‐ and perfusion‐weighted imaging publication-title: Eur Radiol – volume: 60 start-page: 842 year: 2008 end-page: 849 article-title: Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging publication-title: Magn Reson Med – volume: 75 start-page: 137 year: 2016 end-page: 149 article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi‐solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 Tesla publication-title: Magn Reson Med – volume: 31 start-page: e3934 year: 2018 article-title: Towards the complex dependence of MTRasym on T‐1w in amide proton transfer (APT) imaging publication-title: NMR Biomed – volume: 3 start-page: 76 year: 2012 end-page: 83 article-title: Defining an acidosis‐based ischemic penumbra from pH‐weighted MRI publication-title: Transl Stroke Res – volume: 38 start-page: 1391 year: 2018 end-page: 1417 article-title: Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease publication-title: J Cereb Blood Flow Metab – volume: 229 start-page: 155 year: 2013 end-page: 172 article-title: CEST: From basic principles to applications, challenges and opportunities publication-title: J Magn Reson – volume: 69 start-page: 637 year: 2013 end-page: 647 article-title: A new method for detecting exchanging amide protons using chemical exchange rotation transfer publication-title: Magn Reson Med – volume: 131 start-page: 803 year: 2016 end-page: 820 article-title: The 2016 World Health Organization classification of tumors of the central nervous system: A summary publication-title: Acta Neuropathol – volume: 34 start-page: 690 year: 2014 end-page: 698 article-title: Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration‐independent detection (AACID) with MRI publication-title: J Cereb Blood Flow Metab – volume: 21 start-page: 489 year: 2008 end-page: 497 article-title: Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts publication-title: NMR Biomed – year: 2018 article-title: Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF) publication-title: Magn Reson Med – volume: 27 start-page: 1019 year: 2014 end-page: 1029 article-title: Comparing different analysis methods for quantifying the MRI amide proton transfer (APT) effect in hyperacute stroke patients publication-title: NMR Biomed – volume: 17 start-page: 479 year: 2015 end-page: 487 article-title: Assessing amide proton transfer (APT) MRI contrast origins in 9L gliosarcoma in the rat brain using proteomic analysis publication-title: Mol Imaging Biol – start-page: 16 year: 1976 end-page: 21 – volume: 51 start-page: 616 year: 2010 end-page: 622 article-title: MR imaging of high‐grade brain tumors using endogenous protein and peptide‐based contrast publication-title: NeuroImage – volume: 38 start-page: 1500 year: 2018 end-page: 1516 article-title: Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke publication-title: J Cereb Blood Flow Metab – volume: 71 start-page: 1082 year: 2014 end-page: 1092 article-title: Chemical exchange saturation transfer effect in blood publication-title: Magn Reson Med – volume: 64 start-page: 638 year: 2010 end-page: 644 article-title: Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain publication-title: Magn Reson Med – volume: 25 start-page: 1305 year: 2012 end-page: 1309 article-title: Exchange rates of creatine kinase metabolites: Feasibility of imaging creatine by chemical exchange saturation transfer MRI publication-title: NMR Biomed – volume: 60 start-page: 1 year: 2012 end-page: 6 article-title: Imaging acute ischemic tissue acidosis with pH‐sensitive endogenous amide proton transfer (APT) MRI‐Correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH publication-title: NeuroImage – volume: 112 start-page: 180 year: 2015 end-page: 188 article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7 T: Unbiased insight into NOE and amide signal changes in human glioblastoma publication-title: NeuroImage – volume: 69 start-page: 760 year: 2013 end-page: 770 article-title: MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear Overhauser effect at 9.4 T publication-title: Magn Reson Med – volume: 28 start-page: 2115 year: 2018 end-page: 2123 article-title: Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer‐weighted MRI metrics publication-title: Eur Radiol – volume: 26 start-page: 64 year: 2016 end-page: 71 article-title: Molecular MRI differentiation between primary central nervous system lymphomas and high‐grade gliomas using endogenous protein‐based amide proton transfer MR imaging at 3 Tesla publication-title: Eur Radiol – volume: 12 start-page: e0169292 year: 2017 article-title: Tumor infiltration in enhancing and non‐enhancing parts of glioblastoma: A correlation with histopathology publication-title: PLoS One – volume: 78 start-page: 871 year: 2017 end-page: 880 article-title: Improving the detection sensitivity of pH‐weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals publication-title: Magn Reson Med – volume: 49 start-page: 223 year: 2003 end-page: 232 article-title: Metabolic profiles of human brain tumors using quantitative in vivo H magnetic resonance spectroscopy publication-title: Magn Reson Med – volume: 71 start-page: 118 year: 2014 end-page: 132 article-title: Sensitivity and source of amine‐proton exchange and amide‐proton transfer magnetic resonance imaging in cerebral ischemia publication-title: Magn Reson Med – volume: 58 start-page: 786 year: 2007 end-page: 793 article-title: Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain publication-title: Magn Reson Med – volume: 65 start-page: 588 year: 2011 end-page: 594 article-title: Fast multislice pH‐weighted chemical exchange saturation transfer (CEST) MRI with unevenly segmented RF irradiation publication-title: Magn Reson Med – volume: 27 start-page: 1577 year: 2017 end-page: 1484 article-title: Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI publication-title: Eur Radiol – volume: 78 start-page: 1100 year: 2017 end-page: 1109 article-title: Predicting IDH mutation status in grade II gliomas using amide proton transfer‐weighted (APTw) MRI publication-title: Magn Reson Med – volume: 24 start-page: 2631 year: 2014 end-page: 2639 article-title: Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla publication-title: Eur Radiol – volume: 28 start-page: 1963 year: 2010 end-page: 1972 article-title: Updated response assessment criteria for high‐grade gliomas: Response assessment in neuro‐oncology working group publication-title: J Clin Oncol – volume: 5 start-page: 162 year: 2010 end-page: 170 article-title: High‐throughput screening of chemical exchange saturation transfer MR contrast agents publication-title: Contrast Media Mol Imaging – volume: 128 start-page: 615 year: 2015 end-page: 619 article-title: Amide proton transfer magnetic resonance imaging of Alzheimer's disease at 3.0 Tesla: A preliminary study publication-title: Chin Med J – volume: 99 start-page: 256 year: 2014 end-page: 268 article-title: Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla publication-title: NeuroImage – volume: 31 start-page: e3879 year: 2018 article-title: Snapshot‐CEST: Optimizing spiral‐centric‐reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T publication-title: NMR Biomed – volume: 10 start-page: 391 year: 2008 end-page: 411 article-title: Chemical exchange saturation transfer contrast agents for magnetic resonance imaging publication-title: Annu Rev Biomed Eng – volume: 50 start-page: 1120 year: 2003 end-page: 1126 article-title: Amide proton transfer (APT) contrast for imaging of brain tumors publication-title: Magn Reson Med – volume: 70 start-page: 320 year: 2013 end-page: 327 article-title: APT‐weighted and NOE‐weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses publication-title: Magn Reson Med – volume: 28 start-page: 331 year: 2018 end-page: 339 article-title: Amide proton transfer imaging for differentiation of benign and atypical meningiomas publication-title: Eur Radiol – volume: 18 start-page: 283 year: 2016 end-page: 290 article-title: Integration of 2‐hydroxyglutarate‐proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase‐mutant glioma publication-title: Neuro Oncol – volume: 59 start-page: 947 year: 2002 end-page: 949 article-title: How often are nonenhancing supratentorial gliomas malignant? A population study publication-title: Neurology – volume: 71 start-page: 1841 year: 2014 end-page: 1853 article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T publication-title: Magn Reson Med – volume: 35 start-page: 2432 year: 2017 end-page: 2438 article-title: Brain tumor imaging publication-title: J Clin Oncol – volume: 38 start-page: 1702 year: 2017 end-page: 1709 article-title: Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: Comparison with Ki‐67 expression and proton MR spectroscopy imaging publication-title: AJNR Am J Neuroradiol – volume: 452 start-page: 580 year: 2008 end-page: 589 article-title: Imaging in the era of molecular oncology publication-title: Nature – volume: 77 start-page: 571 year: 2017 end-page: 580 article-title: Simultaneous mapping of water shift and B1 (WASABI)‐Application to field‐Inhomogeneity correction of CEST MRI data publication-title: Magn Reson Med – volume: 53 start-page: 790 year: 2005 end-page: 799 article-title: Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI publication-title: Magn Reson Med – volume: 59 start-page: 1218 year: 2012 end-page: 1227 article-title: Magnetic resonance imaging of the Amine‐Proton EXchange (APEX) dependent contrast publication-title: NeuroImage – volume: 66 start-page: 1275 year: 2011 end-page: 1285 article-title: Amide proton transfer imaging with improved robustness to magnetic field inhomogeneity and magnetization transfer asymmetry using saturation with frequency alternating RF irradiation publication-title: Magn Reson Med – volume: 116 start-page: E814 year: 2018 end-page: E823 article-title: Predicting O6‐methylguanine‐DNA methyltransferase protein expression in primary low‐ and high‐grade gliomas using certain qualitative characteristics of amide proton transfer‐weighted magnetic resonance imaging publication-title: World Neurosurg – volume: 27 start-page: 406 year: 2014 end-page: 416 article-title: On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T publication-title: NMR Biomed – volume: 65 start-page: 927 year: 2011 end-page: 948 article-title: Chemical exchange saturation transfer (CEST): What is in a name and what isn't? publication-title: Magn Reson Med – volume: 110 start-page: 315 year: 2012 end-page: 323 article-title: Growth properties of SF188/V+ human glioma in rats in vivo observed by magnetic resonance imaging publication-title: J Neuro Oncol – volume: 38 start-page: 1119 year: 2013 end-page: 1128 article-title: Three‐dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement publication-title: J Magn Reson Imaging – volume: 16 start-page: 53 year: 1996 end-page: 59 article-title: Clinical outcome in ischemic stroke predicted by early diffusion‐weighted and perfusion magnetic resonance imaging: A preliminary analysis publication-title: J Cereb Blood Flow Metab – volume: 51 start-page: 945 year: 2004 end-page: 952 article-title: Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments publication-title: Magn Reson Med – ident: e_1_2_7_130_1 doi: 10.1007/s00330-016-4477-1 – ident: e_1_2_7_150_1 doi: 10.1002/nbm.3934 – ident: e_1_2_7_143_1 doi: 10.1016/j.bbi.2017.04.019 – ident: e_1_2_7_69_1 doi: 10.1002/mrm.20989 – ident: e_1_2_7_78_1 doi: 10.1002/jmri.10395 – ident: e_1_2_7_80_1 doi: 10.1002/mrm.10367 – ident: e_1_2_7_47_1 doi: 10.1002/nbm.3147 – ident: e_1_2_7_152_1 doi: 10.1002/nbm.3054 – ident: e_1_2_7_77_1 doi: 10.1002/mrm.26131 – ident: e_1_2_7_79_1 doi: 10.1007/s11307-015-0828-6 – ident: e_1_2_7_71_1 doi: 10.1007/s00330-015-3805-1 – ident: e_1_2_7_155_1 doi: 10.1007/s00723-011-0306-5 – ident: e_1_2_7_3_1 doi: 10.1063/1.1734121 – ident: e_1_2_7_33_1 doi: 10.1002/mrm.26799 – ident: e_1_2_7_4_1 doi: 10.1006/jmre.1999.1956 – ident: e_1_2_7_89_1 doi: 10.1007/s11307-017-1154-y – ident: e_1_2_7_66_1 doi: 10.1002/mrm.10651 – ident: e_1_2_7_104_1 doi: 10.1038/nm.2682 – ident: e_1_2_7_120_1 doi: 10.1016/j.neuroimage.2011.08.014 – ident: e_1_2_7_114_1 doi: 10.1177/0271678X17700913 – ident: e_1_2_7_123_1 doi: 10.1016/j.neuroimage.2016.07.025 – ident: e_1_2_7_132_1 doi: 10.4103/0366-6999.151658 – ident: e_1_2_7_53_1 doi: 10.1002/mrm.23310 – ident: e_1_2_7_110_1 doi: 10.1016/j.wneu.2018.05.100 – ident: e_1_2_7_91_1 doi: 10.1148/radiology.211.3.r99jn46791 – ident: e_1_2_7_92_1 doi: 10.1200/JCO.2009.26.3541 – ident: e_1_2_7_119_1 doi: 10.1016/j.neuroimage.2011.11.091 – ident: e_1_2_7_138_1 doi: 10.1093/brain/awp282 – ident: e_1_2_7_107_1 doi: 10.1007/s00330-017-5182-4 – ident: e_1_2_7_147_1 doi: 10.1002/mrm.20408 – ident: e_1_2_7_70_1 doi: 10.1016/j.neuroimage.2010.02.050 – ident: e_1_2_7_39_1 doi: 10.1002/mrm.27363 – ident: e_1_2_7_5_1 doi: 10.1016/j.pnmrs.2006.01.001 – ident: e_1_2_7_45_1 doi: 10.1002/mrm.21714 – ident: e_1_2_7_128_1 doi: 10.1002/mrm.25690 – ident: e_1_2_7_90_1 doi: 10.1212/WNL.59.6.947 – ident: e_1_2_7_109_1 doi: 10.1093/neuonc/noy073 – ident: e_1_2_7_146_1 doi: 10.1002/nbm.2792 – ident: e_1_2_7_85_1 doi: 10.1007/s00330-016-4328-0 – ident: e_1_2_7_135_1 doi: 10.3389/fnagi.2015.00198 – ident: e_1_2_7_40_1 doi: 10.1002/mrm.27221 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.24474 – ident: e_1_2_7_156_1 doi: 10.1007/s00330-015-3972-0 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.24284 – ident: e_1_2_7_55_1 doi: 10.1002/mrm.26307 – ident: e_1_2_7_125_1 doi: 10.1002/nbm.3048 – ident: e_1_2_7_81_1 doi: 10.1038/bjc.1991.326 – ident: e_1_2_7_88_1 doi: 10.1002/nbm.3850 – ident: e_1_2_7_60_1 doi: 10.1016/j.mri.2013.07.009 – ident: e_1_2_7_141_1 doi: 10.1002/mrm.26736 – ident: e_1_2_7_139_1 doi: 10.1056/NEJMra1401483 – ident: e_1_2_7_29_1 doi: 10.1016/j.jmr.2011.05.001 – ident: e_1_2_7_100_1 doi: 10.1148/radiol.2015142979 – ident: e_1_2_7_122_1 doi: 10.1038/jcbfm.2014.12 – ident: e_1_2_7_112_1 doi: 10.1097/00004647-199601000-00006 – ident: e_1_2_7_49_1 doi: 10.1371/journal.pone.0155925 – ident: e_1_2_7_27_1 doi: 10.1002/mrm.24560 – ident: e_1_2_7_64_1 doi: 10.1371/journal.pone.0169292 – ident: e_1_2_7_142_1 doi: 10.1177/0271678X17690165 – ident: e_1_2_7_59_1 doi: 10.1002/cmmi.383 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.1910400105 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.24850 – ident: e_1_2_7_42_1 doi: 10.1002/mrm.24450 – ident: e_1_2_7_44_1 doi: 10.1016/j.neuroimage.2014.05.036 – ident: e_1_2_7_57_1 doi: 10.1002/nbm.3879 – ident: e_1_2_7_83_1 doi: 10.1093/neuonc/not158 – ident: e_1_2_7_18_1 doi: 10.1016/j.neuroimage.2013.03.047 – ident: e_1_2_7_65_1 doi: 10.1200/JCO.2017.72.7636 – ident: e_1_2_7_96_1 doi: 10.1073/pnas.1323855111 – ident: e_1_2_7_101_1 doi: 10.1007/s00330-016-4261-2 – ident: e_1_2_7_63_1 doi: 10.1002/mrm.26133 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.25795 – ident: e_1_2_7_31_1 doi: 10.1002/nbm.3216 – ident: e_1_2_7_61_1 – ident: e_1_2_7_87_1 doi: 10.1007/s00330-017-4732-0 – ident: e_1_2_7_151_1 doi: 10.1088/0031-9155/58/22/R221 – ident: e_1_2_7_46_1 doi: 10.1002/mrm.22750 – ident: e_1_2_7_26_1 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.20048 – ident: e_1_2_7_86_1 doi: 10.3174/ajnr.A5301 – ident: e_1_2_7_144_1 doi: 10.1158/1078-0432.CCR-16-2265 – ident: e_1_2_7_153_1 doi: 10.1002/nbm.3075 – ident: e_1_2_7_121_1 doi: 10.1002/mrm.24639 – ident: e_1_2_7_131_1 doi: 10.1038/srep45696 – ident: e_1_2_7_117_1 doi: 10.1002/mrm.21181 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.25277 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2014.03.040 – ident: e_1_2_7_48_1 – ident: e_1_2_7_124_1 doi: 10.1016/j.neuroimage.2017.06.007 – ident: e_1_2_7_68_1 doi: 10.1007/s11060-012-0974-5 – ident: e_1_2_7_7_1 doi: 10.1007/s40134-013-0010-3 – ident: e_1_2_7_129_1 doi: 10.1002/mrm.24770 – ident: e_1_2_7_127_1 doi: 10.3389/fneur.2017.00067 – volume: 8 start-page: 308 year: 2013 ident: e_1_2_7_98_1 article-title: Response assessment of human brain tumors using amide proton transfer imaging at 3T publication-title: Contrast Media Mol Imaging – ident: e_1_2_7_75_1 doi: 10.1007/s11307-017-1136-0 – ident: e_1_2_7_154_1 doi: 10.1016/j.neuroimage.2015.02.040 – ident: e_1_2_7_82_1 doi: 10.1002/jmri.24067 – ident: e_1_2_7_113_1 doi: 10.1177/0271678X17721830 – ident: e_1_2_7_58_1 doi: 10.1002/mrm.21873 – ident: e_1_2_7_133_1 doi: 10.1016/S0896-6273(03)00568-3 – ident: e_1_2_7_137_1 doi: 10.1227/01.NEU.0000249209.11967.CB – ident: e_1_2_7_11_1 doi: 10.1038/nm907 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.24822 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.22761 – ident: e_1_2_7_106_1 doi: 10.1002/mrm.26820 – ident: e_1_2_7_6_1 doi: 10.1146/annurev.bioeng.9.060906.151929 – ident: e_1_2_7_74_1 doi: 10.1007/s00330-017-4962-1 – ident: e_1_2_7_93_1 doi: 10.1038/nm.2268 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.21712 – ident: e_1_2_7_99_1 doi: 10.1002/jmri.25159 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.24315 – ident: e_1_2_7_94_1 doi: 10.1016/j.ijrobp.2011.12.087 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.21387 – ident: e_1_2_7_9_1 doi: 10.1016/j.neuroimage.2017.04.045 – ident: e_1_2_7_62_1 doi: 10.1002/mrm.26322 – ident: e_1_2_7_84_1 doi: 10.1007/s11060-014-1715-8 – ident: e_1_2_7_118_1 doi: 10.1002/mrm.22628 – ident: e_1_2_7_126_1 doi: 10.1093/brain/awu374 – ident: e_1_2_7_24_1 doi: 10.1016/j.ejca.2017.06.009 – ident: e_1_2_7_108_1 doi: 10.1074/mcp.M116.063883 – ident: e_1_2_7_97_1 doi: 10.1002/mrm.25000 – ident: e_1_2_7_115_1 doi: 10.1007/s12975-011-0110-4 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.10398 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.24784 – ident: e_1_2_7_52_1 doi: 10.1007/s11307-012-0563-1 – start-page: 16 volume-title: Microsurgery for stroke year: 1976 ident: e_1_2_7_111_1 – volume: 63 start-page: 253 year: 2009 ident: e_1_2_7_43_1 article-title: Alsop DC. A multislice gradient echo pulse sequence for CEST imaging publication-title: Magn Reson Med doi: 10.1002/mrm.22193 – ident: e_1_2_7_105_1 doi: 10.1093/neuonc/nov307 – ident: e_1_2_7_50_1 doi: 10.1002/mrm.23141 – ident: e_1_2_7_10_1 doi: 10.1002/jmri.25838 – ident: e_1_2_7_16_1 doi: 10.1073/pnas.0707666105 – ident: e_1_2_7_95_1 doi: 10.1093/neuonc/not245 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.22912 – ident: e_1_2_7_103_1 doi: 10.1007/s00401-016-1545-1 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.25581 – ident: e_1_2_7_2_1 doi: 10.1038/nature06917 – ident: e_1_2_7_140_1 doi: 10.1002/mrm.22862 – ident: e_1_2_7_51_1 doi: 10.1002/mrm.22891 – ident: e_1_2_7_76_1 doi: 10.1002/mrm.26924 – ident: e_1_2_7_56_1 doi: 10.1002/mrm.26141 – ident: e_1_2_7_67_1 doi: 10.1002/nbm.1216 – ident: e_1_2_7_148_1 doi: 10.1038/nm.2615 – year: 2018 ident: e_1_2_7_25_1 article-title: Identifying recurrent malignant glioma after treatment using amide proton transfer‐weighted MR imaging: A validation study with image‐guided stereotactic biopsy publication-title: Clin Cancer Res – ident: e_1_2_7_54_1 doi: 10.1002/mrm.25873 – ident: e_1_2_7_145_1 – ident: e_1_2_7_72_1 doi: 10.1007/s00330-017-4867-z – ident: e_1_2_7_134_1 doi: 10.1007/s00330-014-3241-7 – ident: e_1_2_7_136_1 doi: 10.3389/fnins.2017.00489 – ident: e_1_2_7_149_1 doi: 10.1002/mrm.26264 – ident: e_1_2_7_73_1 doi: 10.1002/jmri.25597 – ident: e_1_2_7_8_1 doi: 10.1016/j.jmr.2012.11.024 – ident: e_1_2_7_116_1 doi: 10.1038/sj.jcbfm.9600424 – ident: e_1_2_7_35_1 doi: 10.1016/j.jmr.2011.12.012 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.22546 – ident: e_1_2_7_102_1 doi: 10.1002/mrm.26470 |
SSID | ssj0009945 |
Score | 2.6523082 |
SecondaryResourceType | review_article |
Snippet | Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile... Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile... |
SourceID | swepub pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 347 |
SubjectTerms | Alzheimer's disease Annan fysik APT‐weighted imaging Brain Brain cancer brain tumor Brain tumors CEST imaging Clinical Medicine Dependence Fysik Head injuries Image contrast Klinisk medicin Magnetic resonance imaging Medical and Health Sciences Medical imaging Medicin och hälsovetenskap molecular imaging Movement disorders Multiple sclerosis Natural Sciences Naturvetenskap Neurodegenerative diseases Neuroimaging Organic chemistry Other Physics Topics Parkinson's disease Peptides pH effects Physical Sciences Proteins Protons Radiologi och bildbehandling Radiology and Medical Imaging Radiology, Nuclear Medicine and Medical Imaging stroke Traumatic brain injury Tumors |
Title | APT‐weighted MRI: Techniques, current neuro applications, and challenging issues |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26645 https://www.ncbi.nlm.nih.gov/pubmed/30663162 https://www.proquest.com/docview/2256022522 https://www.proquest.com/docview/2179385814 https://pubmed.ncbi.nlm.nih.gov/PMC6625919 https://lup.lub.lu.se/record/35d06584-f4d1-454b-9e76-53ca6bbc5577 oai:portal.research.lu.se:publications/35d06584-f4d1-454b-9e76-53ca6bbc5577 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UPogv3i_RKiP6ojTbJDOTZMSXIi21sCLLFoogw9yWttZ0aXYRfPIn-Bv9Jc4t2cYWUR8SAnNmwsycM-eb23cAXrBZnZuy0inNVZWSXInU-h2VWvCqylLKzPhoDeP35d4B2T-kh2vwprsLE_gh-gU3Zxl-vHYGLmS7tSINPflyfjyy7oW4G-busJZDRJMVdxRjPkKxxQ84zeus6rlJi61V1qE3ugQxL5-UjHyiQyjrfdHuTfjU1SIcQfk8Wi7kSH37jeDxf6t5C25EkIq2g1bdhjXT3IFr47gNfxcm2x-mP7__-OqXVY1G48m712jascG2m0gF1ifk2TLRxU3yTSQajVQM4WL9JvI9396Dg92d6du9NAZnSFVZYZoyI2sxk4ZhYecoojDSAkdtMqZYIY2gDolQTBiWoja4qESuZhor5RCl0ETj-7DenDXmIaCaaSnc0oYxGVGECiEyIVRNdK6JEjqBl10ncRWZy10AjVMeOJcL7hqJ-0ZK4HkvOw98HVdKbXR9zaPNtrxw6M--iiKBZ32ytTa3hSIac7a0Mm48q2mdkwQeBNXof4MdestLm7saKE0v4Ji8hynN8ZFn9C7dLDRnCewE9RpkOV3O7SPtw1vDMdUeNfKZbR5OKJGcmarkFCthbUtRWlUJfLyinDCf45FE6iiWN7-wOvyXhb_y-vqH5uX7Vu_816N_EX4M1y0cZeF45QasL86X5omFfAv51Jv2L_4NVyE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkYAL70KggBFcQM02ie0k5lahVtvSrdBqK1VcLL9WLZR01ewKiRM_gd_IL8GvzXZphYBDokgeO4o94_k8dr4BeMXGdW7KSqc0V1VKciVS63dUasGrKkspM-OzNQz2y_4B2T2kh_FsjvsXJvBDdAE3Zxl-vnYG7gLSGwvW0E9fzo571r8QehWuuZTefkU1XLBHMeZzFFsEgdO8zqqOnbTYWNRd9kcXQObFs5KRUXQZzHpvtH07pFxtPYmhO4TyuTebyp769hvF439_6B24FXEq2gyKdReumOYeXB_Enfj7MNz8MPr5_cdXH1k1Gg2GO2_RaE4I264jFYifkCfMROf3ydeRaDRSMYuLdZ3ID377AA62t0bv-mnMz5CqssI0ZUbWYiwNw8IuU0RhpMWO2mRMsUIaQR0YoZgwLEVtcFGJXI01VsqBSqGJxquw0pw25hGgmmkpXHTDmIwoQoUQmRCqJjrXRAmdwOv5KHEVyctdDo0THmiXC-46iftOSuBlJzsJlB2XSq3NB5tHs2154QCgvRVFAi-6YmtwbhdFNOZ0ZmXclFbTOicJPAy60b0GOwCXl7Z2taQ1nYAj814uaY6PPKl36RaiOUtgK-jXUpWT2cRe0l68NRxT7YEjH9vu4YQSyZmpSk6xEta8FKVVlcDHS9oJSzoeeaSOYnuTcwHiv2z8jVfYP3Qv37V6558e_4vwc7jRHw32-N7O_vsncNOiUxZOW67ByvRsZp5aBDiVz7yd_wIofls8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UCsUX75fRqhF9UTrbmUkyMxFfiu3SVreUZQtFkJDb0GqdLt1dBJ_8Cf5Gf4m5zMx2bRH1IcNATjIkOSfny2W-A_CCVWVq8kLHNFVFTFIlYut3VGzBq8pzKRPjozUM9vLtA7J7SA-X4E37L0zgh-g23Jxl-PnaGfhYV-tz0tBPX86Oe9a9EHoFrpI8KZ1Obw7n5FGM-RDFFkDgOC2ToiMnzdbnZRfd0QWMefGqZEMouohlvTPq34CPbTPCHZTPvdlU9tS33xge_7edN-F6g1LRRlCrW7Bk6tuwMmjO4e_AcGN_9PP7j69-X9VoNBjuvEajlg52soZUoH1Cni4TnT8lX0Oi1kg1MVys40R-6Cd34aC_NXq7HTfRGWKVF5jGzMhSVNIwLOwiRWRGWuSoTcIUy6QR1EERignDUpQGZ4VIVaWxUg5SCk00vgfL9WltHgAqmZbC7W0YkxBFqBAiEUKVRKeaKKEjeNkOElcNdbmLoHHCA-lyxl0ncd9JETzvZMeBsONSqdV2rHljtBOeOfhnH1kWwbMu25qbO0MRtTmdWRk3oZW0TEkE94NqdJ_BDr6luS1dLChNJ-CovBdz6uMjT-mdu2VoyiLYCuq1UORkNrZJ2sQnhmOqPWzkle0eTiiRnJki5xQrYY1LUVoUEXy4pJ6woOMNi9RRU9_43PbwX1b-yuvrH7qX71q9828P_0X4Kazsb_b5-529d4_gmoWmLFy1XIXl6dnMPLbwbyqfeCv_BQOoWfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APT-weighted+MRI%3A+Techniques%2C+current+neuro+applications%2C+and+challenging+issues&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Zhou%2C+Jinyuan&rft.au=Heo%2C+Hye-Young&rft.au=Knutsson%2C+Linda&rft.au=van+Zijl%2C+Peter+C+M&rft.date=2019-08-01&rft.issn=1522-2586&rft_id=info:doi/10.1002%2Fjmri.26645&rft.externalDocID=oai_lup_lub_lu_se_35d06584_f4d1_454b_9e76_53ca6bbc5577 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |