APT‐weighted MRI: Techniques, current neuro applications, and challenging issues

Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer ima...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 50; no. 2; pp. 347 - 364
Main Authors Zhou, Jinyuan, Heo, Hye‐Young, Knutsson, Linda, van Zijl, Peter C.M., Jiang, Shanshan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347–364.
AbstractList Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347–364.
Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer (CEST) imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this paper, we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we will outline technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo.
Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals invivo.
Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364.
Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo.
Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo.Level of Evidence: 3Technical Efficacy Stage: 3J. Magn. Reson. Imaging 2019;50:347–364.
Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364.Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364.
Author Jiang, Shanshan
Heo, Hye‐Young
Knutsson, Linda
van Zijl, Peter C.M.
Zhou, Jinyuan
AuthorAffiliation 1 Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
3 Department of Medical Radiation Physics, Lund University, Lund, Sweden
AuthorAffiliation_xml – name: 1 Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
– name: 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
– name: 3 Department of Medical Radiation Physics, Lund University, Lund, Sweden
Author_xml – sequence: 1
  givenname: Jinyuan
  surname: Zhou
  fullname: Zhou, Jinyuan
  email: jzhou2@jhmi.edu
  organization: Kennedy Krieger Institute
– sequence: 2
  givenname: Hye‐Young
  surname: Heo
  fullname: Heo, Hye‐Young
  organization: Kennedy Krieger Institute
– sequence: 3
  givenname: Linda
  surname: Knutsson
  fullname: Knutsson, Linda
  organization: Lund University
– sequence: 4
  givenname: Peter C.M.
  surname: van Zijl
  fullname: van Zijl, Peter C.M.
  organization: Kennedy Krieger Institute
– sequence: 5
  givenname: Shanshan
  surname: Jiang
  fullname: Jiang, Shanshan
  organization: Kennedy Krieger Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30663162$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/35d06584-f4d1-454b-9e76-53ca6bbc5577$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/35d06584-f4d1-454b-9e76-53ca6bbc5577$$DView record from Swedish Publication Index
BookMark eNqNkstu1DAUhiNURC-w4QFQJDYIkeJL7MQskKqqQNEgUDWsjxznzIxHHifYCaPu-gg8I0-CpzOtaAWIhS_S-c7vXz7_YbbnO49Z9pSSY0oIe71cBXvMpCzFg-yACsYKJmq5l-5E8ILWpNrPDmNcEkKUKsWjbJ8TKTmV7CC7OPky_Xn1Y412vhiwzT9dnL_Jp2gW3n4bMb7KzRgC-iH3OIYu133vrNGD7Xyqad_mZqGdQz-3fp7bGFPP4-zhTLuIT3bnUfb13dn09EMx-fz-_PRkUhhZcVEobGo9a1BxTWmtGTaC8xaJMoo1qEUliBK8VLzRNXJWaWpmLTeGKsZ1W7b8KNNb3bjGfmygD3alwyV02kLfhUE7CBhRB7MAN0JESNSte-CiJVLUJczKlkIpygYUVhIEN1o2jRGiqtIbk7--4cY-rWan_Z9yb7dySWuFrUkfG5LNO87vVLxdwLz7DlIyoahKAi92AqHbzGeAlY0GndMeuzECo5XitahpmdDn99BlNwafJgKMCUnSxliinv3u6NbKTUISQLaACV2MAWdg7HD9hcmgdUAJbEIImxDCdQhTy8t7LTeqf4TpFl5bh5f_IOFjyua25xci7O82
CitedBy_id crossref_primary_10_2174_1573405619666230126124039
crossref_primary_10_1109_TMI_2020_3046460
crossref_primary_10_1007_s11064_024_04307_5
crossref_primary_10_1186_s12885_022_09205_z
crossref_primary_10_1002_nbm_4699
crossref_primary_10_1002_mrm_28184
crossref_primary_10_1016_j_acra_2024_03_019
crossref_primary_10_3389_fnins_2025_1533799
crossref_primary_10_1007_s42058_020_00028_0
crossref_primary_10_1002_jmri_28287
crossref_primary_10_1016_j_nicl_2022_103121
crossref_primary_10_1053_j_sult_2021_07_003
crossref_primary_10_1186_s13244_021_01126_y
crossref_primary_10_2147_JHC_S272535
crossref_primary_10_3390_ijms231710187
crossref_primary_10_3389_fonc_2022_822756
crossref_primary_10_1002_mrm_30134
crossref_primary_10_1097_RCT_0000000000001141
crossref_primary_10_1109_TBME_2024_3407092
crossref_primary_10_1016_j_mri_2021_11_015
crossref_primary_10_1016_j_acra_2024_12_054
crossref_primary_10_1002_mrm_27881
crossref_primary_10_1016_j_mri_2019_05_005
crossref_primary_10_3389_fonc_2021_698427
crossref_primary_10_1016_j_nicl_2019_102153
crossref_primary_10_3389_fnagi_2023_1266859
crossref_primary_10_1016_j_mri_2024_04_011
crossref_primary_10_3389_fphys_2023_1098959
crossref_primary_10_1007_s00330_024_11202_8
crossref_primary_10_1021_cbmi_3c00019
crossref_primary_10_32604_cmc_2023_031695
crossref_primary_10_3390_pharmaceutics14020451
crossref_primary_10_1016_j_jrras_2024_101043
crossref_primary_10_3389_fneur_2022_789355
crossref_primary_10_1002_mrm_29970
crossref_primary_10_1002_mrm_29173
crossref_primary_10_1002_nbm_4671
crossref_primary_10_1007_s11307_021_01607_y
crossref_primary_10_3390_cancers14081907
crossref_primary_10_1007_s00330_021_08039_w
crossref_primary_10_22630_MGV_2020_29_1_3
crossref_primary_10_3389_fneur_2019_01307
crossref_primary_10_1148_radiol_2020191376
crossref_primary_10_1002_jmri_29037
crossref_primary_10_3389_fmed_2024_1347267
crossref_primary_10_3389_fonc_2022_886968
crossref_primary_10_3390_biomedicines11092348
crossref_primary_10_1093_braincomms_fcae172
crossref_primary_10_1186_s13244_019_0771_1
crossref_primary_10_1002_nbm_4785
crossref_primary_10_1002_nbm_4662
crossref_primary_10_1148_rycan_2021200155
crossref_primary_10_1186_s40644_022_00515_w
crossref_primary_10_1155_2020_6418343
crossref_primary_10_1007_s10334_021_00911_6
crossref_primary_10_1016_j_radi_2021_08_006
crossref_primary_10_1002_mrm_28513
crossref_primary_10_1016_j_mri_2023_06_005
crossref_primary_10_1016_j_mri_2023_06_006
crossref_primary_10_1016_j_mri_2023_06_003
crossref_primary_10_1016_j_mri_2024_01_006
crossref_primary_10_1016_j_mri_2023_06_002
crossref_primary_10_3389_fonc_2024_1402628
crossref_primary_10_1016_j_radonc_2021_07_010
crossref_primary_10_1055_a_1403_4895
crossref_primary_10_1002_mrm_28781
crossref_primary_10_1016_j_mri_2023_07_003
crossref_primary_10_1002_ima_23027
crossref_primary_10_1002_mrm_29878
crossref_primary_10_1016_j_wneu_2023_12_023
crossref_primary_10_1038_s41582_021_00510_y
crossref_primary_10_1002_mrm_30056
crossref_primary_10_1148_radiol_2021210041
crossref_primary_10_1016_j_mri_2023_07_011
crossref_primary_10_3390_bioengineering10121399
crossref_primary_10_1016_j_mri_2023_07_014
crossref_primary_10_1002_mrm_29748
crossref_primary_10_1148_radiol_2021203766
crossref_primary_10_1002_mrm_29746
crossref_primary_10_1089_neur_2021_0064
crossref_primary_10_1002_mrm_28653
crossref_primary_10_3389_fradi_2023_1267615
crossref_primary_10_1016_j_mrl_2022_10_002
crossref_primary_10_1002_jmri_27212
crossref_primary_10_1002_mp_16256
crossref_primary_10_3389_fnins_2019_00520
crossref_primary_10_1016_j_brainresbull_2023_110793
crossref_primary_10_1016_j_jmr_2019_106648
crossref_primary_10_1038_s41598_020_64912_6
crossref_primary_10_3389_fonc_2023_1223598
crossref_primary_10_1002_jmri_29199
crossref_primary_10_1002_mrm_28565
crossref_primary_10_1002_mrm_29412
crossref_primary_10_1007_s00330_024_11000_2
crossref_primary_10_1002_mrm_30194
crossref_primary_10_3389_fneur_2021_707030
crossref_primary_10_1002_mrm_30075
crossref_primary_10_1007_s00259_021_05455_4
crossref_primary_10_3389_fonc_2021_640906
crossref_primary_10_3389_fnagi_2020_572421
crossref_primary_10_3390_ph14010011
crossref_primary_10_1007_s11011_023_01330_3
crossref_primary_10_1007_s00330_020_06985_5
crossref_primary_10_3390_ijms24043151
crossref_primary_10_1002_mrm_29408
crossref_primary_10_3389_fnins_2023_1137176
crossref_primary_10_1002_mrm_28313
crossref_primary_10_1016_j_acra_2023_09_005
crossref_primary_10_1002_mrm_28433
crossref_primary_10_1002_mrm_29643
crossref_primary_10_3389_fped_2022_996949
crossref_primary_10_1038_s41598_021_85168_8
crossref_primary_10_3389_fnins_2024_1442176
crossref_primary_10_1002_nbm_4906
crossref_primary_10_3389_fnins_2022_876587
crossref_primary_10_1016_j_mri_2024_06_004
crossref_primary_10_1002_nbm_4731
crossref_primary_10_1002_jmri_28204
crossref_primary_10_1002_nbm_4850
crossref_primary_10_1016_j_jmr_2019_07_034
crossref_primary_10_1186_s12967_025_06153_7
crossref_primary_10_3390_cancers16173014
crossref_primary_10_1002_nbm_4176
crossref_primary_10_1021_acschemneuro_9b00334
crossref_primary_10_30629_0023_2149_2023_101_4_5_235_240
crossref_primary_10_1002_jmri_29099
crossref_primary_10_1002_nbm_4734
crossref_primary_10_1177_19714009211002766
crossref_primary_10_3390_cancers16050888
crossref_primary_10_1002_mrm_27937
crossref_primary_10_1007_s00330_024_11172_x
crossref_primary_10_3389_fneur_2021_733323
crossref_primary_10_1002_jmri_27105
crossref_primary_10_1002_mrm_28573
crossref_primary_10_1016_j_clinimag_2021_09_002
crossref_primary_10_1002_nbm_4168
crossref_primary_10_1002_nbm_4960
crossref_primary_10_1002_mrm_28699
crossref_primary_10_3390_ijms222111559
crossref_primary_10_1007_s00234_022_02947_4
crossref_primary_10_1016_j_acra_2024_09_043
crossref_primary_10_1007_s00330_024_11220_6
crossref_primary_10_52396_JUSTC_2023_0027
crossref_primary_10_3390_ijms24076627
crossref_primary_10_1002_mrm_30440
crossref_primary_10_3389_fnins_2024_1424316
crossref_primary_10_1002_jmri_28224
crossref_primary_10_1002_nbm_4710
crossref_primary_10_1002_mrm_29211
crossref_primary_10_1002_mrm_29574
crossref_primary_10_1016_j_heliyon_2024_e38062
crossref_primary_10_1016_j_mri_2022_11_004
crossref_primary_10_1016_j_radonc_2023_109694
crossref_primary_10_1002_mrm_29570
crossref_primary_10_1097_RCT_0000000000001699
crossref_primary_10_1002_nbm_4717
crossref_primary_10_1089_neu_2023_0654
crossref_primary_10_3390_nano13152163
crossref_primary_10_1002_nbm_4955
crossref_primary_10_1002_nbm_4711
crossref_primary_10_3389_fnagi_2021_791679
crossref_primary_10_1016_j_mri_2023_12_002
crossref_primary_10_1016_j_neuroimage_2020_117165
crossref_primary_10_3390_diagnostics12020490
crossref_primary_10_1016_j_crad_2021_12_017
crossref_primary_10_1002_nbm_4719
crossref_primary_10_1016_j_mri_2023_04_001
crossref_primary_10_1002_nbm_4262
crossref_primary_10_1002_jmri_26710
crossref_primary_10_1038_s41551_021_00809_7
crossref_primary_10_1007_s00330_020_07243_4
crossref_primary_10_1002_mrm_29440
crossref_primary_10_1016_j_mric_2021_06_012
crossref_primary_10_1002_nbm_4944
crossref_primary_10_1002_mrm_29448
crossref_primary_10_1002_nbm_4824
crossref_primary_10_1007_s11307_020_01565_x
crossref_primary_10_3389_fonc_2020_562049
crossref_primary_10_1002_neo2_70002
crossref_primary_10_4103_IJNO_IJNO_403_21
crossref_primary_10_1007_s00261_024_04768_w
crossref_primary_10_1002_mrm_30460
crossref_primary_10_1186_s12967_023_04451_6
crossref_primary_10_1097_PPO_0000000000000545
crossref_primary_10_1002_mrm_30228
crossref_primary_10_1016_j_ejrad_2020_109466
crossref_primary_10_1002_mrm_29471
crossref_primary_10_1007_s00330_020_07122_y
crossref_primary_10_1007_s00330_020_07397_1
crossref_primary_10_3390_brainsci12010053
crossref_primary_10_1002_mrm_28825
crossref_primary_10_1002_jmri_29333
crossref_primary_10_1002_nbm_4778
crossref_primary_10_3390_cancers14153771
crossref_primary_10_1002_nbm_5294
crossref_primary_10_1016_j_mri_2024_02_015
crossref_primary_10_2463_mrms_tn_2024_0069
crossref_primary_10_3389_fonc_2021_783544
crossref_primary_10_1002_mrm_30458
crossref_primary_10_2478_raon_2023_0051
crossref_primary_10_3390_tomography8040165
crossref_primary_10_3390_cancers15174311
crossref_primary_10_1259_bjro_20230025
crossref_primary_10_1002_jmri_27977
crossref_primary_10_1016_j_mri_2021_02_006
crossref_primary_10_1002_mrm_30241
crossref_primary_10_1016_j_jchemneu_2021_101944
crossref_primary_10_1097_RCT_0000000000001378
crossref_primary_10_1002_mrm_30249
crossref_primary_10_1002_mrm_27875
crossref_primary_10_1038_s41598_019_44820_0
crossref_primary_10_1002_jmri_29598
crossref_primary_10_1007_s11307_019_01382_x
crossref_primary_10_1002_mrm_29937
crossref_primary_10_1021_acschemneuro_2c00494
crossref_primary_10_1002_mrm_29480
crossref_primary_10_3389_fphys_2021_793741
crossref_primary_10_1016_j_nicl_2021_102737
crossref_primary_10_1002_mrm_30112
crossref_primary_10_1002_jmri_28379
crossref_primary_10_1002_jmri_29468
crossref_primary_10_1002_mrm_29243
crossref_primary_10_1002_nbm_4983
crossref_primary_10_1002_mrm_29241
crossref_primary_10_1002_nbm_4626
crossref_primary_10_1002_jmri_28013
crossref_primary_10_1002_nbm_4744
crossref_primary_10_1002_jmri_29587
crossref_primary_10_1016_j_heliyon_2024_e32699
Cites_doi 10.1007/s00330-016-4477-1
10.1002/nbm.3934
10.1016/j.bbi.2017.04.019
10.1002/mrm.20989
10.1002/jmri.10395
10.1002/mrm.10367
10.1002/nbm.3147
10.1002/nbm.3054
10.1002/mrm.26131
10.1007/s11307-015-0828-6
10.1007/s00330-015-3805-1
10.1007/s00723-011-0306-5
10.1063/1.1734121
10.1002/mrm.26799
10.1006/jmre.1999.1956
10.1007/s11307-017-1154-y
10.1002/mrm.10651
10.1038/nm.2682
10.1016/j.neuroimage.2011.08.014
10.1177/0271678X17700913
10.1016/j.neuroimage.2016.07.025
10.4103/0366-6999.151658
10.1002/mrm.23310
10.1016/j.wneu.2018.05.100
10.1148/radiology.211.3.r99jn46791
10.1200/JCO.2009.26.3541
10.1016/j.neuroimage.2011.11.091
10.1093/brain/awp282
10.1007/s00330-017-5182-4
10.1002/mrm.20408
10.1016/j.neuroimage.2010.02.050
10.1002/mrm.27363
10.1016/j.pnmrs.2006.01.001
10.1002/mrm.21714
10.1002/mrm.25690
10.1212/WNL.59.6.947
10.1093/neuonc/noy073
10.1002/nbm.2792
10.1007/s00330-016-4328-0
10.3389/fnagi.2015.00198
10.1002/mrm.27221
10.1002/mrm.24474
10.1007/s00330-015-3972-0
10.1002/mrm.24284
10.1002/mrm.26307
10.1002/nbm.3048
10.1038/bjc.1991.326
10.1002/nbm.3850
10.1016/j.mri.2013.07.009
10.1002/mrm.26736
10.1056/NEJMra1401483
10.1016/j.jmr.2011.05.001
10.1148/radiol.2015142979
10.1038/jcbfm.2014.12
10.1097/00004647-199601000-00006
10.1371/journal.pone.0155925
10.1002/mrm.24560
10.1371/journal.pone.0169292
10.1177/0271678X17690165
10.1002/cmmi.383
10.1002/mrm.1910400105
10.1002/mrm.24850
10.1002/mrm.24450
10.1016/j.neuroimage.2014.05.036
10.1002/nbm.3879
10.1093/neuonc/not158
10.1016/j.neuroimage.2013.03.047
10.1200/JCO.2017.72.7636
10.1073/pnas.1323855111
10.1007/s00330-016-4261-2
10.1002/mrm.26133
10.1002/mrm.25795
10.1002/nbm.3216
10.1007/s00330-017-4732-0
10.1088/0031-9155/58/22/R221
10.1002/mrm.22750
10.1002/mrm.20048
10.3174/ajnr.A5301
10.1158/1078-0432.CCR-16-2265
10.1002/nbm.3075
10.1002/mrm.24639
10.1038/srep45696
10.1002/mrm.21181
10.1002/mrm.25277
10.1016/j.neuroimage.2014.03.040
10.1016/j.neuroimage.2017.06.007
10.1007/s11060-012-0974-5
10.1007/s40134-013-0010-3
10.1002/mrm.24770
10.3389/fneur.2017.00067
10.1007/s11307-017-1136-0
10.1016/j.neuroimage.2015.02.040
10.1002/jmri.24067
10.1177/0271678X17721830
10.1002/mrm.21873
10.1016/S0896-6273(03)00568-3
10.1227/01.NEU.0000249209.11967.CB
10.1038/nm907
10.1002/mrm.24822
10.1002/mrm.22761
10.1002/mrm.26820
10.1146/annurev.bioeng.9.060906.151929
10.1007/s00330-017-4962-1
10.1038/nm.2268
10.1002/mrm.21712
10.1002/jmri.25159
10.1002/mrm.24315
10.1016/j.ijrobp.2011.12.087
10.1002/mrm.21387
10.1016/j.neuroimage.2017.04.045
10.1002/mrm.26322
10.1007/s11060-014-1715-8
10.1002/mrm.22628
10.1093/brain/awu374
10.1016/j.ejca.2017.06.009
10.1074/mcp.M116.063883
10.1002/mrm.25000
10.1007/s12975-011-0110-4
10.1002/mrm.10398
10.1002/mrm.24784
10.1007/s11307-012-0563-1
10.1002/mrm.22193
10.1093/neuonc/nov307
10.1002/mrm.23141
10.1002/jmri.25838
10.1073/pnas.0707666105
10.1093/neuonc/not245
10.1002/mrm.22912
10.1007/s00401-016-1545-1
10.1002/mrm.25581
10.1038/nature06917
10.1002/mrm.22862
10.1002/mrm.22891
10.1002/mrm.26924
10.1002/mrm.26141
10.1002/nbm.1216
10.1038/nm.2615
10.1002/mrm.25873
10.1007/s00330-017-4867-z
10.1007/s00330-014-3241-7
10.3389/fnins.2017.00489
10.1002/mrm.26264
10.1002/jmri.25597
10.1016/j.jmr.2012.11.024
10.1038/sj.jcbfm.9600424
10.1016/j.jmr.2011.12.012
10.1002/mrm.22546
10.1002/mrm.26470
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
CorporateAuthor Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
Medical Radiation Physics, Lund
MR Physics
Medicinsk strålningsfysik, Lund
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Medicinsk strålningsfysik, Lund
– name: Lund University
– name: MR Physics
– name: Medical Radiation Physics, Lund
– name: Faculty of Science
– name: Lunds universitet
DBID AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
ADTPV
AOWAS
D95
DOI 10.1002/jmri.26645
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList


PubMed

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 364
ExternalDocumentID oai_portal_research_lu_se_publications_35d06584_f4d1_454b_9e76_53ca6bbc5577
oai_lup_lub_lu_se_35d06584_f4d1_454b_9e76_53ca6bbc5577
PMC6625919
30663162
10_1002_jmri_26645
JMRI26645
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: P41EB015909; R01EB009731; R01EB015032
– fundername: Swedish Cancer Society
  funderid: CAN 2015/251
– fundername: National Cancer Institute
  funderid: R01CA166171; R01CA228188; R21CA227783
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: UG3NS106937
– fundername: Forskningsrådet om Hälsa, Arbetsliv och Välfärd
  funderid: 2015‐04170; 2017‐00995
– fundername: Hjärnfonden
  funderid: FO2017‐0236
– fundername: NIBIB NIH HHS
  grantid: R01 EB015032
– fundername: NCI NIH HHS
  grantid: R01 CA166171
– fundername: NCI NIH HHS
  grantid: R21 CA227783
– fundername: NINDS NIH HHS
  grantid: UG3 NS106937
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NIBIB NIH HHS
  grantid: R01 EB009731
– fundername: NCI NIH HHS
  grantid: R01 CA228188
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
5PM
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c6735-9eb8afbe93a118a2eb533de09c92bea5750953493ba8e327a1cfd3cc1923ad4d3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Aug 22 03:13:50 EDT 2025
Thu Jul 03 05:15:18 EDT 2025
Thu Aug 21 18:13:13 EDT 2025
Fri Jul 11 14:23:32 EDT 2025
Fri Jul 25 12:24:28 EDT 2025
Wed Feb 19 02:30:44 EST 2025
Tue Jul 01 03:56:41 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Wed Jan 22 16:41:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CEST imaging
brain tumor
APT-weighted imaging
molecular imaging
stroke
Language English
License 2019 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6735-9eb8afbe93a118a2eb533de09c92bea5750953493ba8e327a1cfd3cc1923ad4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6625919
PMID 30663162
PQID 2256022522
PQPubID 1006400
PageCount 18
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_35d06584_f4d1_454b_9e76_53ca6bbc5577
swepub_primary_oai_lup_lub_lu_se_35d06584_f4d1_454b_9e76_53ca6bbc5577
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6625919
proquest_miscellaneous_2179385814
proquest_journals_2256022522
pubmed_primary_30663162
crossref_citationtrail_10_1002_jmri_26645
crossref_primary_10_1002_jmri_26645
wiley_primary_10_1002_jmri_26645_JMRI26645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 83
2013; 69
2013; 1
2015; 73
2018; 168
2015; 74
2014; 27
1976
2013; 70
2014; 24
2008; 105
2012; 18
2003; 50
2013; 8
2017; 157
2016; 141
2018; 47
2013; 58
2015; 138
2010; 28
2017; 77
2017; 78
2014; 16
2016; 278
2011; 66
2003; 49
2011; 65
2008; 21
2007; 60
1999; 211
2012; 25
2014; 95
2010; 5
2018; 31
2018; 38
2014; 99
2016; 44
2017; 64
2018; 28
2009; 63
2006; 56
2013; 229
2009; 61
2015; 122
2003; 39
2015; 128
2016; 18
1996; 16
2018; 20
2016; 11
2012; 110
2004; 51
2013; 77
2018; 116
1991; 64
2015; 112
2006; 48
2016; 26
2014; 34
2010; 51
2012; 42
2014; 32
2012; 60
2017; 7
2002; 59
2017; 8
2017; 46
2016; 76
2016; 75
2018; 80
2003; 18
2012; 59
2011; 17
1998; 40
2010; 64
2013; 15
2017; 37
2017; 38
2017; 35
2003; 9
2018; 378
2012; 68
2012; 215
2012; 67
2008; 60
1963; 39
2018; 79
2007; 27
2012; 83
2015; 17
2011
2010
2017; 27
2017; 23
2008; 10
2014; 111
2015; 7
2011; 211
2007; 57
2007; 58
2015; 28
2012; 3
2013; 38
2017; 16
2017; 11
2017; 12
2010; 133
2018
2005; 53
2000; 143
2008; 452
2014; 72
2014; 71
2016; 131
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_146_1
Zhou J (e_1_2_7_98_1) 2013; 8
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_135_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_147_1
Jiang S (e_1_2_7_25_1) 2018
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
Dixon WT (e_1_2_7_43_1) 2009; 63
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_148_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
Astrup J (e_1_2_7_111_1) 1976
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_134_1
e_1_2_7_138_1
References_xml – volume: 70
  start-page: 556
  year: 2013
  end-page: 567
  article-title: Quantitative Bayesian model‐based analysis of amide proton transfer MRI
  publication-title: Magn Reson Med
– volume: 39
  start-page: 889
  year: 2003
  end-page: 909
  article-title: Parkinson's disease: Mechanisms and models
  publication-title: Neuron
– volume: 211
  start-page: 149
  year: 2011
  end-page: 155
  article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian‐line‐fit analysis of z‐spectra
  publication-title: J Magn Reson
– volume: 78
  start-page: 1110
  year: 2017
  end-page: 1120
  article-title: Chemical exchange saturation transfer for predicting response to stereotactic radiosurgery in human brain metastasis
  publication-title: Magn Reson Med
– volume: 95
  start-page: 22
  year: 2014
  end-page: 28
  article-title: Concurrent saturation transfer contrast in in vivo brain by a uniform magnetization transfer MRI
  publication-title: NeuroImage
– volume: 27
  start-page: 3181
  year: 2017
  end-page: 3189
  article-title: Amide proton transfer imaging to discriminate between low‐ and high‐grade gliomas: Added value to apparent diffusion coefficient and relative cerebral blood volume
  publication-title: Eur Radiol
– volume: 48
  start-page: 109
  year: 2006
  end-page: 136
  article-title: Chemical exchange saturation transfer imaging and spectroscopy
  publication-title: Progr NMR Spectr
– volume: 49
  start-page: 440
  year: 2003
  end-page: 449
  article-title: Mechanism of magnetization transfer during on‐resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids
  publication-title: Magn Reson Med
– volume: 77
  start-page: 855
  year: 2017
  end-page: 863
  article-title: Quantitative assessment of the effects of water proton concentration and water T1 changes on amide proton transfer (APT) and nuclear overhauser enhancement (NOE) MRI: The origin of the APT imaging signal in brain tumor
  publication-title: Magn Reson Med
– volume: 211
  start-page: 791
  year: 1999
  end-page: 798
  article-title: Glial neoplasms: Dynamic contrast‐enhanced T2*‐weighted MR imaging
  publication-title: Radiology
– volume: 44
  start-page: 456
  year: 2016
  end-page: 462
  article-title: Applying amide proton transfer‐weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas
  publication-title: J Magn Reson Imaging
– start-page: 710
  year: 2011
– volume: 15
  start-page: 114
  year: 2013
  end-page: 122
  article-title: Three‐dimensional turbo‐spin‐echo amide proton transfer MR imaging at 3‐Tesla and its application to high‐grade human brain tumors
  publication-title: Mol Imaging Biol
– volume: 77
  start-page: 2225
  year: 2017
  end-page: 2238
  article-title: Chemical exchange saturation transfer (CEST) imaging with fast variably‐accelerated sensitivity encoding (vSENSE)
  publication-title: Magn Reson Med
– volume: 9
  start-page: 1085
  year: 2003
  end-page: 1090
  article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
  publication-title: Nat Med
– volume: 122
  start-page: 339
  year: 2015
  end-page: 348
  article-title: Grading glial tumors with amide proton transfer MR imaging: Different analytical approaches
  publication-title: J Neuro Oncol
– volume: 215
  start-page: 56
  year: 2012
  end-page: 63
  article-title: Isolating chemical exchange saturation transfer contrast from magnetization transfer asymmetry under two‐frequency rf irradiation
  publication-title: J Magn Reson
– volume: 83
  start-page: 9
  year: 2017
  end-page: 18
  article-title: Amide proton transfer‐weighted MR image‐guided stereotactic biopsy in patients with newly diagnosed gliomas
  publication-title: Eur J Cancer
– volume: 17
  start-page: 130
  year: 2011
  end-page: 134
  article-title: Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides
  publication-title: Nat Med
– volume: 18
  start-page: 530
  year: 2003
  end-page: 536
  article-title: Magnetic resonance imaging‐guided proteomics of human glioblastoma multiforme
  publication-title: J Magn Reson Imag
– volume: 27
  start-page: 1129
  year: 2007
  end-page: 1136
  article-title: Detection of the ischemic penumbra using pH‐weighted MRI
  publication-title: J Cereb Blood Flow Metab
– volume: 64
  start-page: 425
  year: 1991
  end-page: 427
  article-title: Are cancer cells acidic?
  publication-title: Br J Cancer
– volume: 60
  start-page: 17
  year: 2007
  end-page: 28
  article-title: The dopaminergic nigrostriatal system and Parkinson's disease: Molecular events in development, disease, and cell death, and new therapeutic strategies
  publication-title: Neurosurgery
– volume: 77
  start-page: 2272
  year: 2017
  end-page: 2279
  article-title: Amide proton transfer imaging of brain tumors using a self‐corrected 3D fast spin‐echo Dixon method: Comparison with separate B0 correction
  publication-title: Magn Reson Med
– volume: 7
  start-page: 45696
  year: 2017
  article-title: Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: A comparative study with susceptibility weighted imaging
  publication-title: Sci Rep
– volume: 31
  start-page: e3850
  year: 2018
  article-title: Differentiating the histologic grades of gliomas preoperatively using amide proton transfer‐weighted (APTW) and intravoxel incoherent motion MRI
  publication-title: NMR Biomed
– volume: 16
  start-page: 856
  year: 2014
  end-page: 867
  article-title: Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model
  publication-title: Neuro Oncol
– volume: 66
  start-page: 831
  year: 2011
  end-page: 838
  article-title: Development of chemical exchange saturation transfer at 7T
  publication-title: Magn Reson Med
– volume: 58
  start-page: R221
  year: 2013
  end-page: 2R69
  article-title: Chemical exchange saturation transfer (CEST) and MR Z‐spectroscopy in vivo: A review of theoretical approaches and methods
  publication-title: Phys Med Biol
– volume: 32
  start-page: 41
  year: 2014
  end-page: 47
  article-title: Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: Accuracy of B field Inhomogeneity corrections with gradient echo method
  publication-title: Magn Reson Imaging
– volume: 37
  start-page: 3422
  year: 2017
  end-page: 3432
  article-title: Amide proton transfer‐weighted MRI detection of traumatic brain injury in rats
  publication-title: J Cereb Blood Flow Metab
– year: 2018
  article-title: Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation‐compensated multi‐pool CEST MRI at 7.0 Tesla
  publication-title: Neuro Oncol
– volume: 141
  start-page: 242
  year: 2016
  end-page: 249
  article-title: pH‐sensitive MRI demarcates graded tissue acidification during acute stroke — pH specificity enhancement with magnetization transfer and relaxation‐normalized amide proton transfer (APT) MRI
  publication-title: NeuroImage
– volume: 11
  start-page: 489
  year: 2017
  article-title: Chemical exchange saturation transfer MRI signal loss of the substantia nigra as an imaging biomarker to evaluate the diagnosis and serverity of Parkinson's disease
  publication-title: Front Neurosci
– volume: 27
  start-page: 240
  year: 2014
  end-page: 252
  article-title: Inverse Z‐spectrum analysis for spillover‐, MT‐, and T1‐corrected steady‐state pulsed CEST‐MRI — application to pH‐weighted MRI of acute stroke
  publication-title: NMR Biomed
– volume: 26
  start-page: 1792
  year: 2016
  end-page: 1800
  article-title: Chemical exchange saturation transfer (CEST) MR technique for in‐vivo liver imaging at 3.0 Tesla
  publication-title: Eur Radiol
– volume: 80
  start-page: 1352
  year: 2018
  end-page: 1363
  article-title: Chemical exchange saturation transfer fingerprinting for exchange rate quantification
  publication-title: Magn Reson Med
– volume: 74
  start-page: 42
  year: 2015
  end-page: 50
  article-title: Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI
  publication-title: Magn Reson Med
– volume: 61
  start-page: 1441
  year: 2009
  end-page: 1450
  article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments
  publication-title: Magn Reson Med
– volume: 70
  start-page: 1070
  year: 2013
  end-page: 1081
  article-title: Quantitative characterization of nuclear Overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1033
  year: 2011
  end-page: 1041
  article-title: Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T
  publication-title: Magn Reson Med
– volume: 77
  start-page: 114
  year: 2013
  end-page: 124
  article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T
  publication-title: NeuroImage
– volume: 26
  start-page: 4390
  year: 2016
  end-page: 4403
  article-title: Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma
  publication-title: Eur Radiol
– start-page: 338
  year: 2010
– volume: 16
  start-page: 39
  year: 2017
  end-page: 56
  article-title: Quantitative proteomics reveals fundamental regulatory differences in oncogenic HRAS and isocitrate dehydrogenase (IDH1) driven astrocytoma
  publication-title: Mol Cell Proteomics
– volume: 46
  start-page: 732
  year: 2017
  end-page: 739
  article-title: Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors
  publication-title: J Magn Reson Imaging
– volume: 65
  start-page: 1620
  year: 2011
  end-page: 1629
  article-title: Optimization of pulse train presaturation for CEST imaging in clinical scanners
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1630
  year: 2016
  end-page: 1639
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla
  publication-title: Magn Reson Med
– volume: 42
  start-page: 393
  year: 2012
  end-page: 402
  article-title: A simple model for understanding the origin of the amide proton transfer MRI signal in tissue
  publication-title: Appl Magn Reson
– volume: 111
  start-page: 4542
  year: 2014
  end-page: 4527
  article-title: In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma
  publication-title: Proc Natl Acad Sci U S A
– volume: 378
  start-page: 169
  year: 2018
  end-page: 180
  article-title: Multiple sclerosis
  publication-title: N Engl J Med
– volume: 64
  start-page: 344
  year: 2017
  end-page: 353
  article-title: Using functional and molecular MRI techniques to detect neuroinflammation and neuroprotection after traumatic brain injury
  publication-title: Brain Behav Immun
– volume: 76
  start-page: 136
  year: 2016
  end-page: 144
  article-title: Highly accelerated chemical exchange saturation transfer (CEST) measurements with linear algebraic modeling
  publication-title: Magn Reson Med
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J Magn Reson
– volume: 77
  start-page: 1853
  year: 2017
  end-page: 1865
  article-title: Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1579
  year: 2012
  end-page: 1589
  article-title: In vivo 3D whole‐brain pulsed steady state chemical exchange saturation transfer at 7T
  publication-title: Magn Reson Med
– volume: 138
  start-page: 36
  year: 2015
  end-page: 42
  article-title: Identifying the ischaemic penumbra using pH‐weighted magnetic resonance imaging
  publication-title: Brain
– volume: 39
  start-page: 2892
  year: 1963
  end-page: 2901
  article-title: Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance
  publication-title: J Chem Phys
– volume: 71
  start-page: 1798
  year: 2014
  end-page: 1812
  article-title: Variable delay multi‐pulse train for fast chemical exchange saturation transfer and relayed‐nuclear overhauser enhancement MRI
  publication-title: Magn Reson Med
– volume: 40
  start-page: 36
  year: 1998
  end-page: 42
  article-title: Proton NMR spectroscopy of solvent‐saturable resonance: A new approach to study pH effects in situ
  publication-title: Magn Reson Med
– year: 2018
  article-title: Identifying recurrent malignant glioma after treatment using amide proton transfer‐weighted MR imaging: A validation study with image‐guided stereotactic biopsy
  publication-title: Clin Cancer Res
– volume: 68
  start-page: 1228
  year: 2012
  end-page: 1233
  article-title: Keyhole chemical exchange saturation transfer
  publication-title: Magn Reson Med
– volume: 27
  start-page: 4516
  year: 2017
  end-page: 4524
  article-title: Applying protein‐based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma
  publication-title: Eur Radiol
– volume: 79
  start-page: 2766
  year: 2018
  end-page: 2772
  article-title: A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH
  publication-title: Magn Reson Med
– volume: 73
  start-page: 1615
  year: 2015
  end-page: 1622
  article-title: Observation of true and pseudo NOE signals using CEST‐MRI and CEST‐MRS sequences with and without lipid suppression
  publication-title: Magn Reson Med
– volume: 70
  start-page: 216
  year: 2013
  end-page: 224
  article-title: Amide proton transfer imaging of the breast at 3 T: Establishing reproducibility and possible feasibility assessing chemotherapy response
  publication-title: Magn Reson Med
– volume: 83
  start-page: E431
  year: 2012
  end-page: E436
  article-title: Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 7
  start-page: 198
  year: 2015
  article-title: Chemical exchange saturation transfer MR imaging is superior to diffusion‐tensor imaging in the diagnosis and severity evaluation of Parkinson's disease: A study on substantia nigra and striatum
  publication-title: Front Aging Neurosci
– volume: 278
  start-page: 514
  year: 2016
  end-page: 523
  article-title: Pre‐ and posttreatment glioma: Comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation
  publication-title: Radiology
– volume: 8
  start-page: 67
  year: 2017
  article-title: Evolution of cerebral ischemia assessed by amide proton transfer‐weighted MRI
  publication-title: Front Neurol
– volume: 11
  start-page: e0155925
  year: 2016
  article-title: Amide proton transfer imaging of diffuse gliomas: Effect of saturation pulse length in parallel transmission‐based technique
  publication-title: PLoS One
– volume: 18
  start-page: 624
  year: 2012
  end-page: 629
  article-title: 2‐Hydroxyglutarate detection by magnetic resonance spectroscopy in subjects with IDH‐mutated gliomas
  publication-title: Nat Med
– volume: 23
  start-page: 3667
  year: 2017
  end-page: 3675
  article-title: Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer
  publication-title: Clin Cancer Res
– volume: 18
  start-page: 302
  year: 2012
  end-page: 306
  article-title: Magnetic resonance imaging of glutamate
  publication-title: Nat Med
– volume: 133
  start-page: 172
  year: 2010
  end-page: 188
  article-title: Brain alpha‐synuclein accumulation in multiple system atrophy, Parkinson's disease and progressive supranuclear palsy: A comparative investigation
  publication-title: Brain
– volume: 8
  start-page: 308
  year: 2013
  end-page: 309
  article-title: Response assessment of human brain tumors using amide proton transfer imaging at 3T
  publication-title: Contrast Media Mol Imaging
– volume: 47
  start-page: 11
  year: 2018
  end-page: 27
  article-title: Clinical applications of chemical exchange saturation transfer (CEST) MRI
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 253
  year: 2009
  end-page: 256
  article-title: Alsop DC. A multislice gradient echo pulse sequence for CEST imaging
  publication-title: Magn Reson Med
– volume: 56
  start-page: 585
  year: 2006
  end-page: 592
  article-title: Amide proton transfer imaging of human brain tumors at 3T
  publication-title: Magn Reson Med
– volume: 77
  start-page: 779
  year: 2017
  end-page: 786
  article-title: Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques
  publication-title: Magn Reson Med
– volume: 157
  start-page: 341
  year: 2017
  end-page: 350
  article-title: Enhancing sensitivity of pH‐weighted MRI with combination of amide and guanidyl CEST
  publication-title: NeuroImage
– volume: 72
  start-page: 1113
  year: 2014
  end-page: 1122
  article-title: Amide proton transfer imaging of high intensity focused ultrasound‐treated tumor tissue
  publication-title: Magn Reson Med
– volume: 27
  start-page: 163
  year: 2014
  end-page: 174
  article-title: Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI
  publication-title: NMR Biomed
– volume: 168
  start-page: 222
  year: 2018
  end-page: 241
  article-title: Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field‐dependent saturation spectrum
  publication-title: NeuroImage
– volume: 57
  start-page: 647
  year: 2007
  end-page: 653
  article-title: Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia
  publication-title: Magn Reson Med
– volume: 105
  start-page: 2266
  year: 2008
  end-page: 2270
  article-title: Assessment of glycosaminoglycan concentration in vivo by chemical exchange‐dependent saturation transfer (gagCEST)
  publication-title: Proc Natl Acad Sci U S A
– volume: 20
  start-page: 473
  year: 2018
  end-page: 481
  article-title: Applying amide proton transfer MR imaging to hybrid brain PET/MR: Concordance with gadolinium enhancement and added value to [(18)F]FDG PET
  publication-title: Mol Imaging Biol
– volume: 79
  start-page: 806
  year: 2018
  end-page: 814
  article-title: Amide proton transfer CEST of the cervical spinal cord in multiple sclerosis patients at 3T
  publication-title: Magn Reson Med
– volume: 1
  start-page: 102
  year: 2013
  end-page: 114
  article-title: Chemical exchange saturation transfer (CEST) imaging: Description of technique and potential clinical applications
  publication-title: Curr Radiol Reports
– volume: 20
  start-page: 623
  year: 2018
  end-page: 631
  article-title: Improved differentiation of low‐grade and high‐grade gliomas and detection of tumor proliferation using APT contrast fitted from Z‐spectrum
  publication-title: Mol Imaging Biol
– volume: 28
  start-page: 1
  year: 2015
  end-page: 8
  article-title: CEST signal at 2ppm (CEST@2ppm) from Z‐spectral fitting correlates with creatine distribution in brain tumor
  publication-title: NMR Biomed
– volume: 16
  start-page: 441
  year: 2014
  end-page: 448
  article-title: Amide proton transfer imaging of adult diffuse gliomas: Correlation with histopathological grades
  publication-title: Neuro Oncol
– volume: 60
  start-page: 834
  year: 2008
  end-page: 841
  article-title: Investigation of optimizing and translating pH‐sensitive pulsed‐chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner
  publication-title: Magn Reson Med
– volume: 27
  start-page: 578
  year: 2017
  end-page: 588
  article-title: Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: Comparisons with diffusion‐ and perfusion‐weighted imaging
  publication-title: Eur Radiol
– volume: 60
  start-page: 842
  year: 2008
  end-page: 849
  article-title: Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging
  publication-title: Magn Reson Med
– volume: 75
  start-page: 137
  year: 2016
  end-page: 149
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi‐solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 Tesla
  publication-title: Magn Reson Med
– volume: 31
  start-page: e3934
  year: 2018
  article-title: Towards the complex dependence of MTRasym on T‐1w in amide proton transfer (APT) imaging
  publication-title: NMR Biomed
– volume: 3
  start-page: 76
  year: 2012
  end-page: 83
  article-title: Defining an acidosis‐based ischemic penumbra from pH‐weighted MRI
  publication-title: Transl Stroke Res
– volume: 38
  start-page: 1391
  year: 2018
  end-page: 1417
  article-title: Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease
  publication-title: J Cereb Blood Flow Metab
– volume: 229
  start-page: 155
  year: 2013
  end-page: 172
  article-title: CEST: From basic principles to applications, challenges and opportunities
  publication-title: J Magn Reson
– volume: 69
  start-page: 637
  year: 2013
  end-page: 647
  article-title: A new method for detecting exchanging amide protons using chemical exchange rotation transfer
  publication-title: Magn Reson Med
– volume: 131
  start-page: 803
  year: 2016
  end-page: 820
  article-title: The 2016 World Health Organization classification of tumors of the central nervous system: A summary
  publication-title: Acta Neuropathol
– volume: 34
  start-page: 690
  year: 2014
  end-page: 698
  article-title: Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration‐independent detection (AACID) with MRI
  publication-title: J Cereb Blood Flow Metab
– volume: 21
  start-page: 489
  year: 2008
  end-page: 497
  article-title: Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts
  publication-title: NMR Biomed
– year: 2018
  article-title: Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF)
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1019
  year: 2014
  end-page: 1029
  article-title: Comparing different analysis methods for quantifying the MRI amide proton transfer (APT) effect in hyperacute stroke patients
  publication-title: NMR Biomed
– volume: 17
  start-page: 479
  year: 2015
  end-page: 487
  article-title: Assessing amide proton transfer (APT) MRI contrast origins in 9L gliosarcoma in the rat brain using proteomic analysis
  publication-title: Mol Imaging Biol
– start-page: 16
  year: 1976
  end-page: 21
– volume: 51
  start-page: 616
  year: 2010
  end-page: 622
  article-title: MR imaging of high‐grade brain tumors using endogenous protein and peptide‐based contrast
  publication-title: NeuroImage
– volume: 38
  start-page: 1500
  year: 2018
  end-page: 1516
  article-title: Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke
  publication-title: J Cereb Blood Flow Metab
– volume: 71
  start-page: 1082
  year: 2014
  end-page: 1092
  article-title: Chemical exchange saturation transfer effect in blood
  publication-title: Magn Reson Med
– volume: 64
  start-page: 638
  year: 2010
  end-page: 644
  article-title: Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain
  publication-title: Magn Reson Med
– volume: 25
  start-page: 1305
  year: 2012
  end-page: 1309
  article-title: Exchange rates of creatine kinase metabolites: Feasibility of imaging creatine by chemical exchange saturation transfer MRI
  publication-title: NMR Biomed
– volume: 60
  start-page: 1
  year: 2012
  end-page: 6
  article-title: Imaging acute ischemic tissue acidosis with pH‐sensitive endogenous amide proton transfer (APT) MRI‐Correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH
  publication-title: NeuroImage
– volume: 112
  start-page: 180
  year: 2015
  end-page: 188
  article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7 T: Unbiased insight into NOE and amide signal changes in human glioblastoma
  publication-title: NeuroImage
– volume: 69
  start-page: 760
  year: 2013
  end-page: 770
  article-title: MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear Overhauser effect at 9.4 T
  publication-title: Magn Reson Med
– volume: 28
  start-page: 2115
  year: 2018
  end-page: 2123
  article-title: Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer‐weighted MRI metrics
  publication-title: Eur Radiol
– volume: 26
  start-page: 64
  year: 2016
  end-page: 71
  article-title: Molecular MRI differentiation between primary central nervous system lymphomas and high‐grade gliomas using endogenous protein‐based amide proton transfer MR imaging at 3 Tesla
  publication-title: Eur Radiol
– volume: 12
  start-page: e0169292
  year: 2017
  article-title: Tumor infiltration in enhancing and non‐enhancing parts of glioblastoma: A correlation with histopathology
  publication-title: PLoS One
– volume: 78
  start-page: 871
  year: 2017
  end-page: 880
  article-title: Improving the detection sensitivity of pH‐weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals
  publication-title: Magn Reson Med
– volume: 49
  start-page: 223
  year: 2003
  end-page: 232
  article-title: Metabolic profiles of human brain tumors using quantitative in vivo H magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 71
  start-page: 118
  year: 2014
  end-page: 132
  article-title: Sensitivity and source of amine‐proton exchange and amide‐proton transfer magnetic resonance imaging in cerebral ischemia
  publication-title: Magn Reson Med
– volume: 58
  start-page: 786
  year: 2007
  end-page: 793
  article-title: Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain
  publication-title: Magn Reson Med
– volume: 65
  start-page: 588
  year: 2011
  end-page: 594
  article-title: Fast multislice pH‐weighted chemical exchange saturation transfer (CEST) MRI with unevenly segmented RF irradiation
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1577
  year: 2017
  end-page: 1484
  article-title: Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI
  publication-title: Eur Radiol
– volume: 78
  start-page: 1100
  year: 2017
  end-page: 1109
  article-title: Predicting IDH mutation status in grade II gliomas using amide proton transfer‐weighted (APTw) MRI
  publication-title: Magn Reson Med
– volume: 24
  start-page: 2631
  year: 2014
  end-page: 2639
  article-title: Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla
  publication-title: Eur Radiol
– volume: 28
  start-page: 1963
  year: 2010
  end-page: 1972
  article-title: Updated response assessment criteria for high‐grade gliomas: Response assessment in neuro‐oncology working group
  publication-title: J Clin Oncol
– volume: 5
  start-page: 162
  year: 2010
  end-page: 170
  article-title: High‐throughput screening of chemical exchange saturation transfer MR contrast agents
  publication-title: Contrast Media Mol Imaging
– volume: 128
  start-page: 615
  year: 2015
  end-page: 619
  article-title: Amide proton transfer magnetic resonance imaging of Alzheimer's disease at 3.0 Tesla: A preliminary study
  publication-title: Chin Med J
– volume: 99
  start-page: 256
  year: 2014
  end-page: 268
  article-title: Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla
  publication-title: NeuroImage
– volume: 31
  start-page: e3879
  year: 2018
  article-title: Snapshot‐CEST: Optimizing spiral‐centric‐reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T
  publication-title: NMR Biomed
– volume: 10
  start-page: 391
  year: 2008
  end-page: 411
  article-title: Chemical exchange saturation transfer contrast agents for magnetic resonance imaging
  publication-title: Annu Rev Biomed Eng
– volume: 50
  start-page: 1120
  year: 2003
  end-page: 1126
  article-title: Amide proton transfer (APT) contrast for imaging of brain tumors
  publication-title: Magn Reson Med
– volume: 70
  start-page: 320
  year: 2013
  end-page: 327
  article-title: APT‐weighted and NOE‐weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses
  publication-title: Magn Reson Med
– volume: 28
  start-page: 331
  year: 2018
  end-page: 339
  article-title: Amide proton transfer imaging for differentiation of benign and atypical meningiomas
  publication-title: Eur Radiol
– volume: 18
  start-page: 283
  year: 2016
  end-page: 290
  article-title: Integration of 2‐hydroxyglutarate‐proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase‐mutant glioma
  publication-title: Neuro Oncol
– volume: 59
  start-page: 947
  year: 2002
  end-page: 949
  article-title: How often are nonenhancing supratentorial gliomas malignant? A population study
  publication-title: Neurology
– volume: 71
  start-page: 1841
  year: 2014
  end-page: 1853
  article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T
  publication-title: Magn Reson Med
– volume: 35
  start-page: 2432
  year: 2017
  end-page: 2438
  article-title: Brain tumor imaging
  publication-title: J Clin Oncol
– volume: 38
  start-page: 1702
  year: 2017
  end-page: 1709
  article-title: Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: Comparison with Ki‐67 expression and proton MR spectroscopy imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 452
  start-page: 580
  year: 2008
  end-page: 589
  article-title: Imaging in the era of molecular oncology
  publication-title: Nature
– volume: 77
  start-page: 571
  year: 2017
  end-page: 580
  article-title: Simultaneous mapping of water shift and B1 (WASABI)‐Application to field‐Inhomogeneity correction of CEST MRI data
  publication-title: Magn Reson Med
– volume: 53
  start-page: 790
  year: 2005
  end-page: 799
  article-title: Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI
  publication-title: Magn Reson Med
– volume: 59
  start-page: 1218
  year: 2012
  end-page: 1227
  article-title: Magnetic resonance imaging of the Amine‐Proton EXchange (APEX) dependent contrast
  publication-title: NeuroImage
– volume: 66
  start-page: 1275
  year: 2011
  end-page: 1285
  article-title: Amide proton transfer imaging with improved robustness to magnetic field inhomogeneity and magnetization transfer asymmetry using saturation with frequency alternating RF irradiation
  publication-title: Magn Reson Med
– volume: 116
  start-page: E814
  year: 2018
  end-page: E823
  article-title: Predicting O6‐methylguanine‐DNA methyltransferase protein expression in primary low‐ and high‐grade gliomas using certain qualitative characteristics of amide proton transfer‐weighted magnetic resonance imaging
  publication-title: World Neurosurg
– volume: 27
  start-page: 406
  year: 2014
  end-page: 416
  article-title: On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T
  publication-title: NMR Biomed
– volume: 65
  start-page: 927
  year: 2011
  end-page: 948
  article-title: Chemical exchange saturation transfer (CEST): What is in a name and what isn't?
  publication-title: Magn Reson Med
– volume: 110
  start-page: 315
  year: 2012
  end-page: 323
  article-title: Growth properties of SF188/V+ human glioma in rats in vivo observed by magnetic resonance imaging
  publication-title: J Neuro Oncol
– volume: 38
  start-page: 1119
  year: 2013
  end-page: 1128
  article-title: Three‐dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement
  publication-title: J Magn Reson Imaging
– volume: 16
  start-page: 53
  year: 1996
  end-page: 59
  article-title: Clinical outcome in ischemic stroke predicted by early diffusion‐weighted and perfusion magnetic resonance imaging: A preliminary analysis
  publication-title: J Cereb Blood Flow Metab
– volume: 51
  start-page: 945
  year: 2004
  end-page: 952
  article-title: Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments
  publication-title: Magn Reson Med
– ident: e_1_2_7_130_1
  doi: 10.1007/s00330-016-4477-1
– ident: e_1_2_7_150_1
  doi: 10.1002/nbm.3934
– ident: e_1_2_7_143_1
  doi: 10.1016/j.bbi.2017.04.019
– ident: e_1_2_7_69_1
  doi: 10.1002/mrm.20989
– ident: e_1_2_7_78_1
  doi: 10.1002/jmri.10395
– ident: e_1_2_7_80_1
  doi: 10.1002/mrm.10367
– ident: e_1_2_7_47_1
  doi: 10.1002/nbm.3147
– ident: e_1_2_7_152_1
  doi: 10.1002/nbm.3054
– ident: e_1_2_7_77_1
  doi: 10.1002/mrm.26131
– ident: e_1_2_7_79_1
  doi: 10.1007/s11307-015-0828-6
– ident: e_1_2_7_71_1
  doi: 10.1007/s00330-015-3805-1
– ident: e_1_2_7_155_1
  doi: 10.1007/s00723-011-0306-5
– ident: e_1_2_7_3_1
  doi: 10.1063/1.1734121
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.26799
– ident: e_1_2_7_4_1
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_7_89_1
  doi: 10.1007/s11307-017-1154-y
– ident: e_1_2_7_66_1
  doi: 10.1002/mrm.10651
– ident: e_1_2_7_104_1
  doi: 10.1038/nm.2682
– ident: e_1_2_7_120_1
  doi: 10.1016/j.neuroimage.2011.08.014
– ident: e_1_2_7_114_1
  doi: 10.1177/0271678X17700913
– ident: e_1_2_7_123_1
  doi: 10.1016/j.neuroimage.2016.07.025
– ident: e_1_2_7_132_1
  doi: 10.4103/0366-6999.151658
– ident: e_1_2_7_53_1
  doi: 10.1002/mrm.23310
– ident: e_1_2_7_110_1
  doi: 10.1016/j.wneu.2018.05.100
– ident: e_1_2_7_91_1
  doi: 10.1148/radiology.211.3.r99jn46791
– ident: e_1_2_7_92_1
  doi: 10.1200/JCO.2009.26.3541
– ident: e_1_2_7_119_1
  doi: 10.1016/j.neuroimage.2011.11.091
– ident: e_1_2_7_138_1
  doi: 10.1093/brain/awp282
– ident: e_1_2_7_107_1
  doi: 10.1007/s00330-017-5182-4
– ident: e_1_2_7_147_1
  doi: 10.1002/mrm.20408
– ident: e_1_2_7_70_1
  doi: 10.1016/j.neuroimage.2010.02.050
– ident: e_1_2_7_39_1
  doi: 10.1002/mrm.27363
– ident: e_1_2_7_5_1
  doi: 10.1016/j.pnmrs.2006.01.001
– ident: e_1_2_7_45_1
  doi: 10.1002/mrm.21714
– ident: e_1_2_7_128_1
  doi: 10.1002/mrm.25690
– ident: e_1_2_7_90_1
  doi: 10.1212/WNL.59.6.947
– ident: e_1_2_7_109_1
  doi: 10.1093/neuonc/noy073
– ident: e_1_2_7_146_1
  doi: 10.1002/nbm.2792
– ident: e_1_2_7_85_1
  doi: 10.1007/s00330-016-4328-0
– ident: e_1_2_7_135_1
  doi: 10.3389/fnagi.2015.00198
– ident: e_1_2_7_40_1
  doi: 10.1002/mrm.27221
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.24474
– ident: e_1_2_7_156_1
  doi: 10.1007/s00330-015-3972-0
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.24284
– ident: e_1_2_7_55_1
  doi: 10.1002/mrm.26307
– ident: e_1_2_7_125_1
  doi: 10.1002/nbm.3048
– ident: e_1_2_7_81_1
  doi: 10.1038/bjc.1991.326
– ident: e_1_2_7_88_1
  doi: 10.1002/nbm.3850
– ident: e_1_2_7_60_1
  doi: 10.1016/j.mri.2013.07.009
– ident: e_1_2_7_141_1
  doi: 10.1002/mrm.26736
– ident: e_1_2_7_139_1
  doi: 10.1056/NEJMra1401483
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jmr.2011.05.001
– ident: e_1_2_7_100_1
  doi: 10.1148/radiol.2015142979
– ident: e_1_2_7_122_1
  doi: 10.1038/jcbfm.2014.12
– ident: e_1_2_7_112_1
  doi: 10.1097/00004647-199601000-00006
– ident: e_1_2_7_49_1
  doi: 10.1371/journal.pone.0155925
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.24560
– ident: e_1_2_7_64_1
  doi: 10.1371/journal.pone.0169292
– ident: e_1_2_7_142_1
  doi: 10.1177/0271678X17690165
– ident: e_1_2_7_59_1
  doi: 10.1002/cmmi.383
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.1910400105
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.24850
– ident: e_1_2_7_42_1
  doi: 10.1002/mrm.24450
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuroimage.2014.05.036
– ident: e_1_2_7_57_1
  doi: 10.1002/nbm.3879
– ident: e_1_2_7_83_1
  doi: 10.1093/neuonc/not158
– ident: e_1_2_7_18_1
  doi: 10.1016/j.neuroimage.2013.03.047
– ident: e_1_2_7_65_1
  doi: 10.1200/JCO.2017.72.7636
– ident: e_1_2_7_96_1
  doi: 10.1073/pnas.1323855111
– ident: e_1_2_7_101_1
  doi: 10.1007/s00330-016-4261-2
– ident: e_1_2_7_63_1
  doi: 10.1002/mrm.26133
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.25795
– ident: e_1_2_7_31_1
  doi: 10.1002/nbm.3216
– ident: e_1_2_7_61_1
– ident: e_1_2_7_87_1
  doi: 10.1007/s00330-017-4732-0
– ident: e_1_2_7_151_1
  doi: 10.1088/0031-9155/58/22/R221
– ident: e_1_2_7_46_1
  doi: 10.1002/mrm.22750
– ident: e_1_2_7_26_1
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.20048
– ident: e_1_2_7_86_1
  doi: 10.3174/ajnr.A5301
– ident: e_1_2_7_144_1
  doi: 10.1158/1078-0432.CCR-16-2265
– ident: e_1_2_7_153_1
  doi: 10.1002/nbm.3075
– ident: e_1_2_7_121_1
  doi: 10.1002/mrm.24639
– ident: e_1_2_7_131_1
  doi: 10.1038/srep45696
– ident: e_1_2_7_117_1
  doi: 10.1002/mrm.21181
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.25277
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2014.03.040
– ident: e_1_2_7_48_1
– ident: e_1_2_7_124_1
  doi: 10.1016/j.neuroimage.2017.06.007
– ident: e_1_2_7_68_1
  doi: 10.1007/s11060-012-0974-5
– ident: e_1_2_7_7_1
  doi: 10.1007/s40134-013-0010-3
– ident: e_1_2_7_129_1
  doi: 10.1002/mrm.24770
– ident: e_1_2_7_127_1
  doi: 10.3389/fneur.2017.00067
– volume: 8
  start-page: 308
  year: 2013
  ident: e_1_2_7_98_1
  article-title: Response assessment of human brain tumors using amide proton transfer imaging at 3T
  publication-title: Contrast Media Mol Imaging
– ident: e_1_2_7_75_1
  doi: 10.1007/s11307-017-1136-0
– ident: e_1_2_7_154_1
  doi: 10.1016/j.neuroimage.2015.02.040
– ident: e_1_2_7_82_1
  doi: 10.1002/jmri.24067
– ident: e_1_2_7_113_1
  doi: 10.1177/0271678X17721830
– ident: e_1_2_7_58_1
  doi: 10.1002/mrm.21873
– ident: e_1_2_7_133_1
  doi: 10.1016/S0896-6273(03)00568-3
– ident: e_1_2_7_137_1
  doi: 10.1227/01.NEU.0000249209.11967.CB
– ident: e_1_2_7_11_1
  doi: 10.1038/nm907
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.24822
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.22761
– ident: e_1_2_7_106_1
  doi: 10.1002/mrm.26820
– ident: e_1_2_7_6_1
  doi: 10.1146/annurev.bioeng.9.060906.151929
– ident: e_1_2_7_74_1
  doi: 10.1007/s00330-017-4962-1
– ident: e_1_2_7_93_1
  doi: 10.1038/nm.2268
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.21712
– ident: e_1_2_7_99_1
  doi: 10.1002/jmri.25159
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.24315
– ident: e_1_2_7_94_1
  doi: 10.1016/j.ijrobp.2011.12.087
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.21387
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuroimage.2017.04.045
– ident: e_1_2_7_62_1
  doi: 10.1002/mrm.26322
– ident: e_1_2_7_84_1
  doi: 10.1007/s11060-014-1715-8
– ident: e_1_2_7_118_1
  doi: 10.1002/mrm.22628
– ident: e_1_2_7_126_1
  doi: 10.1093/brain/awu374
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ejca.2017.06.009
– ident: e_1_2_7_108_1
  doi: 10.1074/mcp.M116.063883
– ident: e_1_2_7_97_1
  doi: 10.1002/mrm.25000
– ident: e_1_2_7_115_1
  doi: 10.1007/s12975-011-0110-4
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.10398
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.24784
– ident: e_1_2_7_52_1
  doi: 10.1007/s11307-012-0563-1
– start-page: 16
  volume-title: Microsurgery for stroke
  year: 1976
  ident: e_1_2_7_111_1
– volume: 63
  start-page: 253
  year: 2009
  ident: e_1_2_7_43_1
  article-title: Alsop DC. A multislice gradient echo pulse sequence for CEST imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22193
– ident: e_1_2_7_105_1
  doi: 10.1093/neuonc/nov307
– ident: e_1_2_7_50_1
  doi: 10.1002/mrm.23141
– ident: e_1_2_7_10_1
  doi: 10.1002/jmri.25838
– ident: e_1_2_7_16_1
  doi: 10.1073/pnas.0707666105
– ident: e_1_2_7_95_1
  doi: 10.1093/neuonc/not245
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.22912
– ident: e_1_2_7_103_1
  doi: 10.1007/s00401-016-1545-1
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.25581
– ident: e_1_2_7_2_1
  doi: 10.1038/nature06917
– ident: e_1_2_7_140_1
  doi: 10.1002/mrm.22862
– ident: e_1_2_7_51_1
  doi: 10.1002/mrm.22891
– ident: e_1_2_7_76_1
  doi: 10.1002/mrm.26924
– ident: e_1_2_7_56_1
  doi: 10.1002/mrm.26141
– ident: e_1_2_7_67_1
  doi: 10.1002/nbm.1216
– ident: e_1_2_7_148_1
  doi: 10.1038/nm.2615
– year: 2018
  ident: e_1_2_7_25_1
  article-title: Identifying recurrent malignant glioma after treatment using amide proton transfer‐weighted MR imaging: A validation study with image‐guided stereotactic biopsy
  publication-title: Clin Cancer Res
– ident: e_1_2_7_54_1
  doi: 10.1002/mrm.25873
– ident: e_1_2_7_145_1
– ident: e_1_2_7_72_1
  doi: 10.1007/s00330-017-4867-z
– ident: e_1_2_7_134_1
  doi: 10.1007/s00330-014-3241-7
– ident: e_1_2_7_136_1
  doi: 10.3389/fnins.2017.00489
– ident: e_1_2_7_149_1
  doi: 10.1002/mrm.26264
– ident: e_1_2_7_73_1
  doi: 10.1002/jmri.25597
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jmr.2012.11.024
– ident: e_1_2_7_116_1
  doi: 10.1038/sj.jcbfm.9600424
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jmr.2011.12.012
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.22546
– ident: e_1_2_7_102_1
  doi: 10.1002/mrm.26470
SSID ssj0009945
Score 2.6523082
SecondaryResourceType review_article
Snippet Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile...
Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 347
SubjectTerms Alzheimer's disease
Annan fysik
APT‐weighted imaging
Brain
Brain cancer
brain tumor
Brain tumors
CEST imaging
Clinical Medicine
Dependence
Fysik
Head injuries
Image contrast
Klinisk medicin
Magnetic resonance imaging
Medical and Health Sciences
Medical imaging
Medicin och hälsovetenskap
molecular imaging
Movement disorders
Multiple sclerosis
Natural Sciences
Naturvetenskap
Neurodegenerative diseases
Neuroimaging
Organic chemistry
Other Physics Topics
Parkinson's disease
Peptides
pH effects
Physical Sciences
Proteins
Protons
Radiologi och bildbehandling
Radiology and Medical Imaging
Radiology, Nuclear Medicine and Medical Imaging
stroke
Traumatic brain injury
Tumors
Title APT‐weighted MRI: Techniques, current neuro applications, and challenging issues
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26645
https://www.ncbi.nlm.nih.gov/pubmed/30663162
https://www.proquest.com/docview/2256022522
https://www.proquest.com/docview/2179385814
https://pubmed.ncbi.nlm.nih.gov/PMC6625919
https://lup.lub.lu.se/record/35d06584-f4d1-454b-9e76-53ca6bbc5577
oai:portal.research.lu.se:publications/35d06584-f4d1-454b-9e76-53ca6bbc5577
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UPogv3i_RKiP6ojTbJDOTZMSXIi21sCLLFoogw9yWttZ0aXYRfPIn-Bv9Jc4t2cYWUR8SAnNmwsycM-eb23cAXrBZnZuy0inNVZWSXInU-h2VWvCqylLKzPhoDeP35d4B2T-kh2vwprsLE_gh-gU3Zxl-vHYGLmS7tSINPflyfjyy7oW4G-busJZDRJMVdxRjPkKxxQ84zeus6rlJi61V1qE3ugQxL5-UjHyiQyjrfdHuTfjU1SIcQfk8Wi7kSH37jeDxf6t5C25EkIq2g1bdhjXT3IFr47gNfxcm2x-mP7__-OqXVY1G48m712jascG2m0gF1ifk2TLRxU3yTSQajVQM4WL9JvI9396Dg92d6du9NAZnSFVZYZoyI2sxk4ZhYecoojDSAkdtMqZYIY2gDolQTBiWoja4qESuZhor5RCl0ETj-7DenDXmIaCaaSnc0oYxGVGECiEyIVRNdK6JEjqBl10ncRWZy10AjVMeOJcL7hqJ-0ZK4HkvOw98HVdKbXR9zaPNtrxw6M--iiKBZ32ytTa3hSIac7a0Mm48q2mdkwQeBNXof4MdestLm7saKE0v4Ji8hynN8ZFn9C7dLDRnCewE9RpkOV3O7SPtw1vDMdUeNfKZbR5OKJGcmarkFCthbUtRWlUJfLyinDCf45FE6iiWN7-wOvyXhb_y-vqH5uX7Vu_816N_EX4M1y0cZeF45QasL86X5omFfAv51Jv2L_4NVyE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkYAL70KggBFcQM02ie0k5lahVtvSrdBqK1VcLL9WLZR01ewKiRM_gd_IL8GvzXZphYBDokgeO4o94_k8dr4BeMXGdW7KSqc0V1VKciVS63dUasGrKkspM-OzNQz2y_4B2T2kh_FsjvsXJvBDdAE3Zxl-vnYG7gLSGwvW0E9fzo571r8QehWuuZTefkU1XLBHMeZzFFsEgdO8zqqOnbTYWNRd9kcXQObFs5KRUXQZzHpvtH07pFxtPYmhO4TyuTebyp769hvF439_6B24FXEq2gyKdReumOYeXB_Enfj7MNz8MPr5_cdXH1k1Gg2GO2_RaE4I264jFYifkCfMROf3ydeRaDRSMYuLdZ3ID377AA62t0bv-mnMz5CqssI0ZUbWYiwNw8IuU0RhpMWO2mRMsUIaQR0YoZgwLEVtcFGJXI01VsqBSqGJxquw0pw25hGgmmkpXHTDmIwoQoUQmRCqJjrXRAmdwOv5KHEVyctdDo0THmiXC-46iftOSuBlJzsJlB2XSq3NB5tHs2154QCgvRVFAi-6YmtwbhdFNOZ0ZmXclFbTOicJPAy60b0GOwCXl7Z2taQ1nYAj814uaY6PPKl36RaiOUtgK-jXUpWT2cRe0l68NRxT7YEjH9vu4YQSyZmpSk6xEta8FKVVlcDHS9oJSzoeeaSOYnuTcwHiv2z8jVfYP3Qv37V6558e_4vwc7jRHw32-N7O_vsncNOiUxZOW67ByvRsZp5aBDiVz7yd_wIofls8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UCsUX75fRqhF9UTrbmUkyMxFfiu3SVreUZQtFkJDb0GqdLt1dBJ_8Cf5Gf4m5zMx2bRH1IcNATjIkOSfny2W-A_CCVWVq8kLHNFVFTFIlYut3VGzBq8pzKRPjozUM9vLtA7J7SA-X4E37L0zgh-g23Jxl-PnaGfhYV-tz0tBPX86Oe9a9EHoFrpI8KZ1Obw7n5FGM-RDFFkDgOC2ToiMnzdbnZRfd0QWMefGqZEMouohlvTPq34CPbTPCHZTPvdlU9tS33xge_7edN-F6g1LRRlCrW7Bk6tuwMmjO4e_AcGN_9PP7j69-X9VoNBjuvEajlg52soZUoH1Cni4TnT8lX0Oi1kg1MVys40R-6Cd34aC_NXq7HTfRGWKVF5jGzMhSVNIwLOwiRWRGWuSoTcIUy6QR1EERignDUpQGZ4VIVaWxUg5SCk00vgfL9WltHgAqmZbC7W0YkxBFqBAiEUKVRKeaKKEjeNkOElcNdbmLoHHCA-lyxl0ncd9JETzvZMeBsONSqdV2rHljtBOeOfhnH1kWwbMu25qbO0MRtTmdWRk3oZW0TEkE94NqdJ_BDr6luS1dLChNJ-CovBdz6uMjT-mdu2VoyiLYCuq1UORkNrZJ2sQnhmOqPWzkle0eTiiRnJki5xQrYY1LUVoUEXy4pJ6woOMNi9RRU9_43PbwX1b-yuvrH7qX71q9828P_0X4Kazsb_b5-529d4_gmoWmLFy1XIXl6dnMPLbwbyqfeCv_BQOoWfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APT-weighted+MRI%3A+Techniques%2C+current+neuro+applications%2C+and+challenging+issues&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Zhou%2C+Jinyuan&rft.au=Heo%2C+Hye-Young&rft.au=Knutsson%2C+Linda&rft.au=van+Zijl%2C+Peter+C+M&rft.date=2019-08-01&rft.issn=1522-2586&rft_id=info:doi/10.1002%2Fjmri.26645&rft.externalDocID=oai_lup_lub_lu_se_35d06584_f4d1_454b_9e76_53ca6bbc5577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon