APT‐weighted MRI: Techniques, current neuro applications, and challenging issues

Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer ima...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 50; no. 2; pp. 347 - 364
Main Authors Zhou, Jinyuan, Heo, Hye‐Young, Knutsson, Linda, van Zijl, Peter C.M., Jiang, Shanshan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Amide proton transfer‐weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT‐based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347–364.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1053-1807
1522-2586
1522-2586
DOI:10.1002/jmri.26645