Non-Stationarity in the “Resting Brain’s” Modular Architecture

Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variabi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 6; p. e39731
Main Authors Jones, David T., Vemuri, Prashanthi, Murphy, Matthew C., Gunter, Jeffrey L., Senjem, Matthew L., Machulda, Mary M., Przybelski, Scott A., Gregg, Brian E., Kantarci, Kejal, Knopman, David S., Boeve, Bradley F., Petersen, Ronald C., Jack, Clifford R.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.06.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0039731

Cover

Loading…
More Information
Summary:Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variability has hampered efforts to define a robust metric of connectivity suitable as a biomarker for neurologic illness. We hypothesized that some of this variability rather than representing noise in the measurement process, is related to a fundamental feature of connectivity within ICNs, which is their non-stationary nature. To test this hypothesis, we used a large (n = 892) population-based sample of older subjects to construct a well characterized atlas of 68 functional regions, which were categorized based on independent component analysis network of origin, anatomical locations, and a functional meta-analysis. These regions were then used to construct dynamic graphical representations of brain connectivity within a sliding time window for each subject. This allowed us to demonstrate the non-stationary nature of the brain's modular organization and assign each region to a "meta-modular" group. Using this grouping, we then compared dwell time in strong sub-network configurations of the default mode network (DMN) between 28 subjects with Alzheimer's dementia and 56 cognitively normal elderly subjects matched 1:2 on age, gender, and education. We found that differences in connectivity we and others have previously observed in Alzheimer's disease can be explained by differences in dwell time in DMN sub-network configurations, rather than steady state connectivity magnitude. DMN dwell time in specific modular configurations may also underlie the TF-fMRI findings that have been described in mild cognitive impairment and cognitively normal subjects who are at risk for Alzheimer's dementia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: DTJ CRJ. Performed the experiments: DTJ PV MCM. Analyzed the data: DTJ SAP BEG. Contributed reagents/materials/analysis tools: DTJ MCM JLG MLS. Wrote the paper: DTJ. Acquired data and obtained funding: DSK BFB RCP CRJ. Performed clinical assessment: DSK BFB RCP. Interpreted results: DTJ PV MCM JLG MLS MMM KK DSK BFB RCP CRJ. Critically reviewed manuscript: DTJ PV MCM JLG MLS MMM SAP BEG KK DSK BFB RCP CRJ.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0039731