Ensemble learning for multi-class COVID-19 detection from big data

Coronavirus disease (COVID-19), which has caused a global pandemic, continues to have severe effects on human lives worldwide. Characterized by symptoms similar to pneumonia, its rapid spread requires innovative strategies for its early detection and management. In response to this crisis, data scie...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 10; p. e0292587
Main Authors Kaleem, Sarah, Sohail, Adnan, Tariq, Muhammad Usman, Babar, Muhammad, Qureshi, Basit
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 11.10.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coronavirus disease (COVID-19), which has caused a global pandemic, continues to have severe effects on human lives worldwide. Characterized by symptoms similar to pneumonia, its rapid spread requires innovative strategies for its early detection and management. In response to this crisis, data science and machine learning (ML) offer crucial solutions to complex problems, including those posed by COVID-19. One cost-effective approach to detect the disease is the use of chest X-rays, which is a common initial testing method. Although existing techniques are useful for detecting COVID-19 using X-rays, there is a need for further improvement in efficiency, particularly in terms of training and execution time. This article introduces an advanced architecture that leverages an ensemble learning technique for COVID-19 detection from chest X-ray images. Using a parallel and distributed framework, the proposed model integrates ensemble learning with big data analytics to facilitate parallel processing. This approach aims to enhance both execution and training times, ensuring a more effective detection process. The model’s efficacy was validated through a comprehensive analysis of predicted and actual values, and its performance was meticulously evaluated for accuracy, precision, recall, and F-measure, and compared to state-of-the-art models. The work presented here not only contributes to the ongoing fight against COVID-19 but also showcases the wider applicability and potential of ensemble learning techniques in healthcare.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0292587