Characterization and expression analysis of SnRK2, PYL, and ABF/ AREB/ ABI5 gene families in sweet potato

Abscisic acid (ABA) signaling in plants is essential to several aspects of plant development, such as tolerance to environmental stresses and growth. ABA signaling is also important for storage organ formation in crops, such as sweet potato. However, the repertoire of I. batatas ABA signaling gene f...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 11; p. e0288481
Main Authors Mathura, Sarah R, Sutton, Fedora, Bowrin, Valerie
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 03.11.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abscisic acid (ABA) signaling in plants is essential to several aspects of plant development, such as tolerance to environmental stresses and growth. ABA signaling is also important for storage organ formation in crops, such as sweet potato. However, the repertoire of I. batatas ABA signaling gene families has not yet been fully characterized, so that it is unclear which members of these families are necessary for tuberization. Therefore, genome-wide identification of the sweet potato ABF/ AREB/ ABI5, SnRK2, and PYL gene families was performed, along with phylogenetic, motif, cis-regulatory element (CRE), and expression analyses. Nine ABF, eight SnRK2, and eleven PYL gene family members were identified, and there was high sequence conservation among these proteins that were revealed by phylogenetic and motif analyses. The promoter sequences of these genes had multiple CREs that were involved in hormone responses and stress responses. In silico and qRT-PCR expression analyses revealed that these genes were expressed in various tissues and that IbABF3, IbABF4, IbDPBF3, IbDPBF4, IbPYL4, IbSnRK2.1, and IbSnRK2.2 were significantly expressed during storage root development. These results are an important reference that can be used for functional validation studies to better understand how ABA signaling elicits storage root formation at the molecular level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0288481