Towards subject-level cerebral infarction classification of CT scans using convolutional networks
Automatic evaluation of 3D volumes is a topic of importance in order to speed up clinical decision making. We describe a method to classify computed tomography scans on volume level for the presence of non-acute cerebral infarction. This is not a trivial task, as the lesions are often similar to oth...
Saved in:
Published in | PloS one Vol. 15; no. 7; p. e0235765 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
15.07.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Automatic evaluation of 3D volumes is a topic of importance in order to speed up clinical decision making. We describe a method to classify computed tomography scans on volume level for the presence of non-acute cerebral infarction. This is not a trivial task, as the lesions are often similar to other areas in the brain regarding shape and intensity. A three stage architecture is used for classification: 1) A cranial cavity segmentation network is developed, trained and applied. 2) Region proposals are generated 3) Connected regions are classified using a multi-resolution, densely connected 3D convolutional network. Mean area under curve values for subject level classification are 0.95 for the unstratified test set, 0.88 for stratification by patient age and 0.93 for stratification by CT scanner model. We use a partly segmented dataset of 555 scans of which 186 scans are used in the unstratified test set. Furthermore we examine possible dataset bias for scanner model and patient age parameters. We show a successful application of the proposed three-stage model for full volume classification. In contrast to black-box approaches, the convolutional network's decision can be further assessed by examination of intermediate segmentation results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: FT is an employee of Philips Research. MS, PBN, IR, FKK, BR, FP, EJR and DP have declared that no competing interests exist. This does not alter our adherence to PLOS ONE policies on sharing data and materials. Current address: Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0235765 |