Changes in dead space components during pressure-controlled inverse ratio ventilation: A secondary analysis of a randomized trial

We previously reported that there were no differences between the lung-protective actions of pressure-controlled inverse ratio ventilation and volume control ventilation based on the changes in serum cytokine levels. Dead space represents a ventilation-perfusion mismatch, and can enable us to unders...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 10; p. e0258504
Main Authors Hirabayashi, Go, Yokose, Yuuki, Nagata, Kohei, Oshika, Hiroyuki, Saito, Minami, Akihisa, Yuki, Maruyama, Koichi, Andoh, Tomio
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 13.10.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We previously reported that there were no differences between the lung-protective actions of pressure-controlled inverse ratio ventilation and volume control ventilation based on the changes in serum cytokine levels. Dead space represents a ventilation-perfusion mismatch, and can enable us to understand the heterogeneity and elapsed time changes in ventilation-perfusion mismatch. This study was a secondary analysis of a randomized controlled trial of patients who underwent robot-assisted laparoscopic radical prostatectomy. The inspiratory to expiratory ratio was adjusted individually by observing the expiratory flow-time wave in the pressure-controlled inverse ratio ventilation group (n = 14) and was set to 1:2 in the volume-control ventilation group (n = 13). Using volumetric capnography, the physiological dead space was divided into three dead space components: airway, alveolar, and shunt dead space. The influence of pressure-controlled inverse ratio ventilation and time factor on the changes in each dead space component rate was analyzed using the Mann-Whitney U test and Wilcoxon's signed rank test. The physiological dead space and shunt dead space rate were decreased in the pressure-controlled inverse ratio ventilation group compared with those in the volume control ventilation group (p < 0.001 and p = 0.003, respectively), and both dead space rates increased with time in both groups. The airway dead space rate increased with time, but the difference between the groups was not significant. There were no significant changes in the alveolar dead space rate. Pressure-controlled inverse ratio ventilation reduced the physiological dead space rate, suggesting an improvement in the total ventilation/perfusion mismatch due to improved inflation of the alveoli affected by heterogeneous expansion disorder without hyperinflation of the normal alveoli. However, the shunt dead space rate increased with time, suggesting that atelectasis developed with time in both groups.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0258504