Unifying information theory and machine learning in a model of electrode discrimination in cochlear implants

Despite the development and success of cochlear implants over several decades, wide inter-subject variability in speech perception is reported. This suggests that cochlear implant user-dependent factors limit speech perception at the individual level. Clinical studies have demonstrated the importanc...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 9; p. e0257568
Main Authors Gao, Xiao, Grayden, David, McDonnell, Mark
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 20.09.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Despite the development and success of cochlear implants over several decades, wide inter-subject variability in speech perception is reported. This suggests that cochlear implant user-dependent factors limit speech perception at the individual level. Clinical studies have demonstrated the importance of the number, placement, and insertion depths of electrodes on speech recognition abilities. However, these do not account for all inter-subject variability and to what extent these factors affect speech recognition abilities has not been studied. In this paper, an information theoretic method and machine learning technique are unified in a model to investigate the extent to which key factors limit cochlear implant electrode discrimination. The framework uses a neural network classifier to predict which electrode is stimulated for a given simulated activation pattern of the auditory nerve, and mutual information is then estimated between the actual stimulated electrode and predicted ones. We also investigate how and to what extent the choices of parameters affect the performance of the model. The advantages of this framework include i) electrode discrimination ability is quantified using information theory, ii) it provides a flexible framework that may be used to investigate the key factors that limit the performance of cochlear implant users, and iii) it provides insights for future modeling studies of other types of neural prostheses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0257568