Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome

Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated th...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 36; pp. 13175 - 13180
Main Authors Fujino, Kan, Horie, Masayuki, Honda, Tomoyuki, Merriman, Dana K., Tomonaga, Keizo
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.09.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution.
AbstractList Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.
Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.
Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution. Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called “endogenous bornavirus-like elements” (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel ( Ictidomys tridecemlineatus ), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.
Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution.
Author Merriman, Dana K.
Fujino, Kan
Tomonaga, Keizo
Honda, Tomoyuki
Horie, Masayuki
Author_xml – sequence: 1
  givenname: Kan
  surname: Fujino
  fullname: Fujino, Kan
– sequence: 2
  givenname: Masayuki
  surname: Horie
  fullname: Horie, Masayuki
– sequence: 3
  givenname: Tomoyuki
  surname: Honda
  fullname: Honda, Tomoyuki
– sequence: 4
  givenname: Dana K.
  surname: Merriman
  fullname: Merriman, Dana K.
– sequence: 5
  givenname: Keizo
  surname: Tomonaga
  fullname: Tomonaga, Keizo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25157155$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxS1URLeFMyfAEhcuacexHceXSlDxUakSB-jZchxn10tib-2kUv97nN3tApUQnObwfm80b2ZO0JEP3iL0ksAZAUHPN16nM8JAAKsIIU_QgoAkRcUkHKEFQCmKmpXsGJ2ktAYAyWt4ho5LTrggnC_QeOVXrnGjCx6HDn8I0WvcumR1svjOxSnhaDe9M3qLNPdYe2x9G5bWhyw2s2HLFb37YbHt7WD9iJ3H48riZQyTb3G6nVyMtseza7DP0dNO98m-2NdTdPPp4_fLL8X1189Xl--vC1NV9VhoWfKmMaU02rSdoCCk5dC2TWOhEbQ1neGalU3Fa0bAgNDGCGI7JqTWom7pKbrY9d1MzWBbkweLuleb6AYd71XQTv2peLdSy3Cn8soqWYnc4N2-QQy3k02jGlwytu-1tzm9IjVQkHnj_N8oz5k45xX5H5QwATluRt8-QtdhyhvvtxSD-cJlpl7_nvMQ8OHMGeA7wMSQUrSdMm7cXjTHdr0ioOZ3UvM7qV_vlH3nj3wPrf_uwPtRZuFAE6JopQglYh7m1Q5ZpzHEA8MoMEoBsv5mp3c6KL2MLqmbbyWQCoAwKqWkPwEMOOwb
CitedBy_id crossref_primary_10_3390_v11040320
crossref_primary_10_1016_j_virusres_2018_04_015
crossref_primary_10_3389_fmicb_2019_01139
crossref_primary_10_15789_1563_0625_RII_2331
crossref_primary_10_3389_fmicb_2019_00051
crossref_primary_10_1261_rna_073965_119
crossref_primary_10_1146_annurev_virology_100114_055127
crossref_primary_10_1186_s12864_017_3903_3
crossref_primary_10_1016_j_virusres_2018_02_002
crossref_primary_10_1016_j_cub_2020_06_057
crossref_primary_10_1016_j_virusres_2019_197751
crossref_primary_10_1093_ve_vez017
crossref_primary_10_3390_biom13121706
crossref_primary_10_1371_journal_ppat_1006881
crossref_primary_10_1016_j_cub_2024_04_085
crossref_primary_10_1146_annurev_ento_033020_090410
crossref_primary_10_1038_s41467_023_43186_2
crossref_primary_10_1007_s00018_015_1947_6
crossref_primary_10_1016_j_virusres_2018_04_006
crossref_primary_10_1016_j_celrep_2018_06_045
crossref_primary_10_1292_jvms_16_0274
crossref_primary_10_1261_rna_052092_115
crossref_primary_10_1093_ve_veab076
crossref_primary_10_1128_jvi_00997_24
crossref_primary_10_2222_jsv_70_49
crossref_primary_10_3390_ijms17040435
crossref_primary_10_1016_j_biochi_2015_08_008
crossref_primary_10_1128_JVI_02030_20
crossref_primary_10_1371_journal_ppat_1005785
crossref_primary_10_7717_peerj_5679
crossref_primary_10_1371_journal_pone_0186450
crossref_primary_10_1007_s00401_015_1511_3
crossref_primary_10_1016_j_celrep_2015_08_007
crossref_primary_10_1128_JVI_01621_18
crossref_primary_10_1093_ve_vew035
crossref_primary_10_1093_molbev_msaa180
crossref_primary_10_1266_ggs_18_00049
crossref_primary_10_2222_jsv_64_225
crossref_primary_10_1128_mBio_02209_20
crossref_primary_10_3390_v15030589
crossref_primary_10_1038_srep35548
crossref_primary_10_1292_jvms_18_0211
crossref_primary_10_3892_br_2022_1512
crossref_primary_10_1016_j_coviro_2017_07_021
crossref_primary_10_1056_NEJMoa1415627
crossref_primary_10_1080_2159256X_2016_1165785
crossref_primary_10_1016_j_cois_2021_12_007
crossref_primary_10_1007_s00103_019_02904_2
crossref_primary_10_1073_pnas_2114441119
crossref_primary_10_1016_j_mib_2016_03_002
crossref_primary_10_1071_MA21036
crossref_primary_10_1128_JVI_02124_18
crossref_primary_10_1073_pnas_2010758118
crossref_primary_10_1016_j_it_2019_09_003
crossref_primary_10_1073_pnas_2108123118
crossref_primary_10_2222_jsv_65_145
crossref_primary_10_3389_fmicb_2018_03171
crossref_primary_10_3390_v16030395
crossref_primary_10_1016_j_biologicals_2016_04_004
crossref_primary_10_2222_jsv_66_39
crossref_primary_10_3390_ijms20061318
crossref_primary_10_2903_j_efsa_2017_4951
crossref_primary_10_1038_s41564_024_01825_4
crossref_primary_10_3389_fmicb_2017_02537
crossref_primary_10_3201_eid2303_161061
crossref_primary_10_3389_fmicb_2021_773211
crossref_primary_10_1016_j_cois_2021_10_007
crossref_primary_10_1038_srep25873
crossref_primary_10_7554_eLife_58436
crossref_primary_10_1038_nm0717_791
crossref_primary_10_1038_gt_2015_108
crossref_primary_10_1111_cmi_12515
crossref_primary_10_1146_annurev_virology_110615_042323
crossref_primary_10_1016_j_coviro_2018_07_011
crossref_primary_10_1002_1873_3468_14290
crossref_primary_10_1111_nyas_14097
crossref_primary_10_1128_JVI_00571_17
crossref_primary_10_2222_jsv_72_159
crossref_primary_10_1002_cti2_1114
crossref_primary_10_1371_journal_pgen_1005470
crossref_primary_10_1128_JVI_01204_20
crossref_primary_10_1016_j_coviro_2016_09_011
crossref_primary_10_1128_JVI_00404_19
crossref_primary_10_3390_v7112906
crossref_primary_10_1128_JVI_03653_14
crossref_primary_10_1371_journal_ppat_1006017
crossref_primary_10_1146_annurev_virology_092818_015613
crossref_primary_10_1016_j_coviro_2017_06_004
crossref_primary_10_4044_joma_134_10
crossref_primary_10_3390_v15071420
crossref_primary_10_1016_j_cois_2021_11_005
crossref_primary_10_1080_22221751_2019_1599302
crossref_primary_10_1152_physrev_00021_2019
Cites_doi 10.1073/pnas.1100118108
10.1016/j.chom.2012.04.009
10.1038/msb4100134
10.1016/S1286-4579(02)01564-2
10.1006/viro.1998.9049
10.1128/JVI.01351-06
10.1128/JVI.80.10.4748-4757.2006
10.1038/nature08695
10.1128/JVI.01214-07
10.1073/pnas.0406509102
10.1096/fasebj.6.8.1592206
10.1016/j.str.2003.08.011
10.1007/s00018-008-8500-9
10.1002/emmm.201100140
10.1073/pnas.0402877101
10.1007/s11481-010-9214-y
10.1038/382826a0
10.1111/j.1365-2133.2009.09415.x
10.1128/JVI.80.3.1121-1129.2006
10.1128/JVI.00301-12
10.1007/BF01728655
10.1016/j.micinf.2006.01.010
10.1371/journal.ppat.1000654
10.20506/rst.17.1.1080
10.1099/0022-1317-80-1-97
10.1016/j.placenta.2012.05.005
10.1128/JVI.75.7.3404-3412.2001
10.1016/j.virol.2009.11.016
10.1074/jbc.273.15.9007
10.1038/ni1125
10.1016/j.tree.2012.07.007
10.1002/path.4168
10.1128/JVI.05554-11
10.1073/pnas.0404838101
10.1371/journal.ppat.1001030
10.1038/35001608
10.1111/j.0022-202X.2005.23816.x
10.1128/JVI.77.7.4283-4290.2003
10.1099/0022-1317-79-12-2957
10.1128/JVI.77.1.749-753.2003
10.1016/S0959-437X(00)00138-6
10.1371/journal.pgen.1001191
10.1128/JVI.77.21.11781-11789.2003
10.1038/nrmicro2783
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 9, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 9, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1407046111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
CrossRef
MEDLINE
AGRICOLA
AIDS and Cancer Research Abstracts



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Inhibition of BDV replication by a squirrel EBLN
EISSN 1091-6490
EndPage 13180
ExternalDocumentID PMC4246967
3438684721
25157155
10_1073_pnas_1407046111
111_36_13175
43043300
US201600143999
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c668t-a925bbc29cacdf73079e50ddbbe0b73dcfc5a42b658410c07acc71ef479aa78d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:50:46 EDT 2025
Thu Jul 10 22:37:39 EDT 2025
Fri Jul 11 11:02:03 EDT 2025
Fri Jul 11 15:16:36 EDT 2025
Mon Jun 30 08:29:48 EDT 2025
Thu Apr 03 07:08:35 EDT 2025
Tue Jul 01 01:53:13 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Nov 11 00:30:12 EST 2020
Thu May 29 08:40:54 EDT 2025
Wed Dec 27 19:13:24 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords antiviral immunity
endogenous nonretroviral viruses
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c668t-a925bbc29cacdf73079e50ddbbe0b73dcfc5a42b658410c07acc71ef479aa78d3
Notes http://dx.doi.org/10.1073/pnas.1407046111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: K.F. and K.T. designed research; K.F., M.H., T.H., D.K.M., and K.T. performed research; D.K.M. contributed new reagents/analytic tools; M.H., T.H., and K.T. analyzed data; and K.F. and K.T. wrote the paper.
Edited* by John M. Coffin, Tufts University School of Medicine, Boston, MA, and approved July 24, 2014 (received for review April 17, 2014)
1Present address; Department of Microbiology II, School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan.
2Present address; Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.
OpenAccessLink https://www.pnas.org/content/pnas/111/36/13175.full.pdf
PMID 25157155
PQID 1564000272
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_1564000272
proquest_miscellaneous_1566855561
proquest_miscellaneous_1561470079
pubmed_primary_25157155
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246967
crossref_primary_10_1073_pnas_1407046111
pnas_primary_111_36_13175
fao_agris_US201600143999
proquest_miscellaneous_1803090915
crossref_citationtrail_10_1073_pnas_1407046111
jstor_primary_43043300
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-09
PublicationDateYYYYMMDD 2014-09-09
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Sasaki S (e_1_3_3_24_2) 1993; 40
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
Suzuki Y (e_1_3_3_20_2)
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
8237200 - Zentralbl Veterinarmed B. 1993 Jun;40(4):291-7
11238866 - J Virol. 2001 Apr;75(7):3404-12
19893625 - PLoS Pathog. 2009 Nov;5(11):e1000654
14527390 - Structure. 2003 Oct;11(10):1219-26
15263098 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11117-22
17353931 - Mol Syst Biol. 2007;3:89
11932200 - Microbes Infect. 2002 Apr;4(4):491-500
22901901 - Trends Ecol Evol. 2012 Nov;27(11):627-36
22607802 - Cell Host Microbe. 2012 May 17;11(5):492-503
16697679 - Microbes Infect. 2006 May;8(6):1522-9
15644441 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):725-30
14557662 - J Virol. 2003 Nov;77(21):11781-9
22695103 - Placenta. 2012 Sep;33(9):663-71
16641268 - J Virol. 2006 May;80(10):4748-57
15310846 - Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9
10693809 - Nature. 2000 Feb 17;403(6771):785-9
11088016 - Curr Opin Genet Dev. 2000 Dec;10(6):651-5
22565131 - Nat Rev Microbiol. 2012 Jun;10(6):395-406
17079312 - J Virol. 2007 Jan;81(2):743-9
21436027 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5771-6
20686665 - PLoS Pathog. 2010;6(7):e1001030
9638816 - Rev Sci Tech. 1998 Apr;17(1):269-77
20422298 - J Neuroimmune Pharmacol. 2010 Sep;5(3):326-35
19945724 - Virology. 2010 Feb 5;397(1):64-72
8752279 - Nature. 1996 Aug 29;382(6594):826-9
21937656 - J Virol. 2011 Dec;85(23):12170-8
12634385 - J Virol. 2003 Apr;77(7):4283-90
9934690 - J Gen Virol. 1999 Jan;80 ( Pt 1):97-100
21124940 - PLoS Genet. 2010 Nov;6(11):e1001191
17699582 - J Virol. 2007 Oct;81(20):11441-51
20054395 - Nature. 2010 Jan 7;463(7277):84-7
1592206 - FASEB J. 1992 May;6(8):2537-44
12477881 - J Virol. 2003 Jan;77(1):749-53
16414989 - J Virol. 2006 Feb;80(3):1121-9
9535888 - J Biol Chem. 1998 Apr 10;273(15):9007-12
23335387 - J Pathol. 2013 May;230(1):59-69
19785608 - Br J Dermatol. 2009 Dec;161(6):1225-31
21542132 - EMBO Mol Med. 2011 Jun;3(6):320-33
25475938 - Genes Genet Syst. 2014;89(3):143-8
9527928 - Virology. 1998 Mar 30;243(1):188-97
18818869 - Cell Mol Life Sci. 2008 Nov;65(21):3422-32
22855497 - J Virol. 2012 Oct;86(20):11194-208
9880009 - J Gen Virol. 1998 Dec;79 ( Pt 12):2957-63
16098038 - J Invest Dermatol. 2005 Aug;125(2):278-87
8828142 - Virus Genes. 1995;11(2-3):147-61
15496950 - Nat Immunol. 2004 Nov;5(11):1109-15
References_xml – ident: e_1_3_3_37_2
  doi: 10.1073/pnas.1100118108
– ident: e_1_3_3_21_2
  doi: 10.1016/j.chom.2012.04.009
– ident: e_1_3_3_44_2
  doi: 10.1038/msb4100134
– ident: e_1_3_3_20_2
  article-title: Origin of endogenous bornavirus-like nucleoprotein elements in thirteen-lined ground squirrels
  publication-title: Genes Genet Syst
– ident: e_1_3_3_19_2
  doi: 10.1016/S1286-4579(02)01564-2
– ident: e_1_3_3_27_2
  doi: 10.1006/viro.1998.9049
– ident: e_1_3_3_23_2
  doi: 10.1128/JVI.01351-06
– ident: e_1_3_3_7_2
  doi: 10.1128/JVI.80.10.4748-4757.2006
– ident: e_1_3_3_16_2
  doi: 10.1038/nature08695
– ident: e_1_3_3_40_2
  doi: 10.1128/JVI.01214-07
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0406509102
– ident: e_1_3_3_4_2
  doi: 10.1096/fasebj.6.8.1592206
– ident: e_1_3_3_30_2
  doi: 10.1016/j.str.2003.08.011
– ident: e_1_3_3_38_2
  doi: 10.1007/s00018-008-8500-9
– ident: e_1_3_3_13_2
  doi: 10.1002/emmm.201100140
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0402877101
– ident: e_1_3_3_6_2
  doi: 10.1007/s11481-010-9214-y
– volume: 40
  start-page: 291
  year: 1993
  ident: e_1_3_3_24_2
  article-title: In borna disease virus infected rabbit neurons 100 nm particle structures accumulate at areas of Joest-Degen inclusion bodies
  publication-title: Zentralbl Veterinarmed B
– ident: e_1_3_3_36_2
  doi: 10.1038/382826a0
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1365-2133.2009.09415.x
– ident: e_1_3_3_34_2
  doi: 10.1128/JVI.80.3.1121-1129.2006
– ident: e_1_3_3_41_2
  doi: 10.1128/JVI.00301-12
– ident: e_1_3_3_8_2
  doi: 10.1007/BF01728655
– ident: e_1_3_3_26_2
  doi: 10.1016/j.micinf.2006.01.010
– ident: e_1_3_3_35_2
  doi: 10.1371/journal.ppat.1000654
– ident: e_1_3_3_14_2
  doi: 10.20506/rst.17.1.1080
– ident: e_1_3_3_33_2
  doi: 10.1099/0022-1317-80-1-97
– ident: e_1_3_3_43_2
  doi: 10.1016/j.placenta.2012.05.005
– ident: e_1_3_3_29_2
  doi: 10.1128/JVI.75.7.3404-3412.2001
– ident: e_1_3_3_31_2
  doi: 10.1016/j.virol.2009.11.016
– ident: e_1_3_3_32_2
  doi: 10.1074/jbc.273.15.9007
– ident: e_1_3_3_42_2
  doi: 10.1038/ni1125
– ident: e_1_3_3_10_2
  doi: 10.1016/j.tree.2012.07.007
– ident: e_1_3_3_45_2
  doi: 10.1002/path.4168
– ident: e_1_3_3_46_2
  doi: 10.1128/JVI.05554-11
– ident: e_1_3_3_2_2
  doi: 10.1073/pnas.0404838101
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.ppat.1001030
– ident: e_1_3_3_9_2
  doi: 10.1038/35001608
– ident: e_1_3_3_12_2
  doi: 10.1111/j.0022-202X.2005.23816.x
– ident: e_1_3_3_25_2
  doi: 10.1128/JVI.77.7.4283-4290.2003
– ident: e_1_3_3_28_2
  doi: 10.1099/0022-1317-79-12-2957
– ident: e_1_3_3_39_2
  doi: 10.1128/JVI.77.1.749-753.2003
– ident: e_1_3_3_1_2
  doi: 10.1016/S0959-437X(00)00138-6
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pgen.1001191
– ident: e_1_3_3_22_2
  doi: 10.1128/JVI.77.21.11781-11789.2003
– ident: e_1_3_3_3_2
  doi: 10.1038/nrmicro2783
– reference: 15644441 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):725-30
– reference: 20686665 - PLoS Pathog. 2010;6(7):e1001030
– reference: 8237200 - Zentralbl Veterinarmed B. 1993 Jun;40(4):291-7
– reference: 21436027 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5771-6
– reference: 11238866 - J Virol. 2001 Apr;75(7):3404-12
– reference: 16414989 - J Virol. 2006 Feb;80(3):1121-9
– reference: 15310846 - Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9
– reference: 8828142 - Virus Genes. 1995;11(2-3):147-61
– reference: 9934690 - J Gen Virol. 1999 Jan;80 ( Pt 1):97-100
– reference: 22695103 - Placenta. 2012 Sep;33(9):663-71
– reference: 16641268 - J Virol. 2006 May;80(10):4748-57
– reference: 8752279 - Nature. 1996 Aug 29;382(6594):826-9
– reference: 21937656 - J Virol. 2011 Dec;85(23):12170-8
– reference: 21124940 - PLoS Genet. 2010 Nov;6(11):e1001191
– reference: 9638816 - Rev Sci Tech. 1998 Apr;17(1):269-77
– reference: 16098038 - J Invest Dermatol. 2005 Aug;125(2):278-87
– reference: 11932200 - Microbes Infect. 2002 Apr;4(4):491-500
– reference: 16697679 - Microbes Infect. 2006 May;8(6):1522-9
– reference: 19785608 - Br J Dermatol. 2009 Dec;161(6):1225-31
– reference: 19893625 - PLoS Pathog. 2009 Nov;5(11):e1000654
– reference: 9527928 - Virology. 1998 Mar 30;243(1):188-97
– reference: 9535888 - J Biol Chem. 1998 Apr 10;273(15):9007-12
– reference: 19945724 - Virology. 2010 Feb 5;397(1):64-72
– reference: 18818869 - Cell Mol Life Sci. 2008 Nov;65(21):3422-32
– reference: 12477881 - J Virol. 2003 Jan;77(1):749-53
– reference: 14527390 - Structure. 2003 Oct;11(10):1219-26
– reference: 11088016 - Curr Opin Genet Dev. 2000 Dec;10(6):651-5
– reference: 14557662 - J Virol. 2003 Nov;77(21):11781-9
– reference: 22855497 - J Virol. 2012 Oct;86(20):11194-208
– reference: 10693809 - Nature. 2000 Feb 17;403(6771):785-9
– reference: 15263098 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11117-22
– reference: 1592206 - FASEB J. 1992 May;6(8):2537-44
– reference: 21542132 - EMBO Mol Med. 2011 Jun;3(6):320-33
– reference: 22565131 - Nat Rev Microbiol. 2012 Jun;10(6):395-406
– reference: 20054395 - Nature. 2010 Jan 7;463(7277):84-7
– reference: 17353931 - Mol Syst Biol. 2007;3:89
– reference: 17079312 - J Virol. 2007 Jan;81(2):743-9
– reference: 22901901 - Trends Ecol Evol. 2012 Nov;27(11):627-36
– reference: 20422298 - J Neuroimmune Pharmacol. 2010 Sep;5(3):326-35
– reference: 12634385 - J Virol. 2003 Apr;77(7):4283-90
– reference: 22607802 - Cell Host Microbe. 2012 May 17;11(5):492-503
– reference: 25475938 - Genes Genet Syst. 2014;89(3):143-8
– reference: 9880009 - J Gen Virol. 1998 Dec;79 ( Pt 12):2957-63
– reference: 23335387 - J Pathol. 2013 May;230(1):59-69
– reference: 15496950 - Nat Immunol. 2004 Nov;5(11):1109-15
– reference: 17699582 - J Virol. 2007 Oct;81(20):11441-51
SSID ssj0009580
Score 2.4618979
Snippet Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented,...
Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral...
Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13175
SubjectTerms Amino Acid Sequence
Amino acids
Animals
Base Sequence
Biological Sciences
Borna Disease - transmission
Borna Disease - virology
Borna disease virus
Borna disease virus - physiology
Cell lines
Cercopithecus aethiops
Conserved Sequence - genetics
DNA
DNA-Directed DNA Polymerase - metabolism
evolution
genome
Genome - genetics
Genomes
HEK293 Cells
hosts
Humans
Infections
Molecular Sequence Data
Mononegavirales
Protein Structure, Tertiary
Proteins
Replicon - genetics
Retroviridae
Retrovirus
Ribonucleoproteins - metabolism
RNA
Sciuridae
Sciuridae - genetics
Sciuridae - virology
Small mammals
Spermophilus
Transfection
Vero Cells
vertebrates
Viral Proteins - chemistry
Viral Proteins - metabolism
virus replication
Virus Replication - genetics
Viruses
Title Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome
URI https://www.jstor.org/stable/43043300
http://www.pnas.org/content/111/36/13175.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25157155
https://www.proquest.com/docview/1564000272
https://www.proquest.com/docview/1561470079
https://www.proquest.com/docview/1566855561
https://www.proquest.com/docview/1803090915
https://pubmed.ncbi.nlm.nih.gov/PMC4246967
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa28cILYsBYYCAj8TBUZeTixPXjQJsKbGUSrbS3yHYcFjaSaW2Rxp_hr3Ls2ElaxjR4iarYdaKcL-finPMdhF5zkVMRxsQXiiifCEJ0sbL0SazJWPKEFqZu7Xicjqbk42lyurb2q5e1tJiLPfnzxrqS_5EqnAO56irZf5BsuyicgN8gXziChOF4Jxl_qM5KUTqf751uNuy-uAx-lFcL80nA7cppRxNeZlXltSVmFfoPZp5_UZ6rgWpSyV3qoy740LvqOlf4Sl3oZssr1AYnrfWbuVyDsdtc3O9KVaz-mA38wcm4a3x8uPhWmsbfg08dREe1bfB1zGf8enFedgNVbhzdSf297g8ca25Ju48LGOZ249buZITEpGqxvnaOwGKSpqa61c5WFzcwjNPB5V6ofR4fjk0PKKt6zdmeHW_H_zASoNV0Z-OKz8BOgMojqbvIEh33-HN2OD06yiYHp5N1dC-COMRkjo76rM7DpsbJ3rjjjqLx25Xll9ye9YLXLv9Vk-rC1JsCnNU83Z7jM3mIHtiIBe838NtEa6p6hDadTPGuJS5_8xjNOzziusAGj9jiERuc4R4esbjGvMIdHvEKHrHFIy4rDNDCDR6xwyNu8PgETQ8PJu9Hvu3q4cs0Hc59zqJECBkxyWVegIGhTCVBnguhAkHjXBYy4SQS2jUOAxlQLiUNVUEo45wO83gLbVR1pbYRZoEiXNKUyZyTXDKhmAoLlg-lZJHIUw_tuYeeSUt5rzuvXGQm9YLGmX70WSclD-22f7hs2F7-PnUbpJjxr2CLs-mXSDM1aq5MCLg8tGVE2y4Bio_EcRB4yDOrtEtD8B2nmUGuh3YcADKrYuBySUpMckDkoVftMBgA_VWPVwpko-eEhIKrz26dkw4T3Qn3ljlD_bUVwge4lacN7tobhSAooRB5eIguIbKdoEnql0eq8syQ1cNbkbKUPrvDdZ-j-51a2EEb86uFegEu_1y8NK_dbyZFA5k
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+Borna+disease+virus+replication+by+an+endogenous+bornavirus-like+element+in+the+ground+squirrel+genome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fujino%2C+Kan&rft.au=Horie%2C+Masayuki&rft.au=Honda%2C+Tomoyuki&rft.au=Merriman%2C+Dana+K&rft.date=2014-09-09&rft.issn=0027-8424&rft.volume=111&rft.issue=36+p.13175-13180&rft.spage=13175&rft.epage=13180&rft_id=info:doi/10.1073%2Fpnas.1407046111&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F36.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F36.cover.gif