Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome
Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 36; pp. 13175 - 13180 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.09.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution. |
---|---|
AbstractList | Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo. Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo. Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution. Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called “endogenous bornavirus-like elements” (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel ( Ictidomys tridecemlineatus ), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo. Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution. |
Author | Merriman, Dana K. Fujino, Kan Tomonaga, Keizo Honda, Tomoyuki Horie, Masayuki |
Author_xml | – sequence: 1 givenname: Kan surname: Fujino fullname: Fujino, Kan – sequence: 2 givenname: Masayuki surname: Horie fullname: Horie, Masayuki – sequence: 3 givenname: Tomoyuki surname: Honda fullname: Honda, Tomoyuki – sequence: 4 givenname: Dana K. surname: Merriman fullname: Merriman, Dana K. – sequence: 5 givenname: Keizo surname: Tomonaga fullname: Tomonaga, Keizo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25157155$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1v1DAQxS1URLeFMyfAEhcuacexHceXSlDxUakSB-jZchxn10tib-2kUv97nN3tApUQnObwfm80b2ZO0JEP3iL0ksAZAUHPN16nM8JAAKsIIU_QgoAkRcUkHKEFQCmKmpXsGJ2ktAYAyWt4ho5LTrggnC_QeOVXrnGjCx6HDn8I0WvcumR1svjOxSnhaDe9M3qLNPdYe2x9G5bWhyw2s2HLFb37YbHt7WD9iJ3H48riZQyTb3G6nVyMtseza7DP0dNO98m-2NdTdPPp4_fLL8X1189Xl--vC1NV9VhoWfKmMaU02rSdoCCk5dC2TWOhEbQ1neGalU3Fa0bAgNDGCGI7JqTWom7pKbrY9d1MzWBbkweLuleb6AYd71XQTv2peLdSy3Cn8soqWYnc4N2-QQy3k02jGlwytu-1tzm9IjVQkHnj_N8oz5k45xX5H5QwATluRt8-QtdhyhvvtxSD-cJlpl7_nvMQ8OHMGeA7wMSQUrSdMm7cXjTHdr0ioOZ3UvM7qV_vlH3nj3wPrf_uwPtRZuFAE6JopQglYh7m1Q5ZpzHEA8MoMEoBsv5mp3c6KL2MLqmbbyWQCoAwKqWkPwEMOOwb |
CitedBy_id | crossref_primary_10_3390_v11040320 crossref_primary_10_1016_j_virusres_2018_04_015 crossref_primary_10_3389_fmicb_2019_01139 crossref_primary_10_15789_1563_0625_RII_2331 crossref_primary_10_3389_fmicb_2019_00051 crossref_primary_10_1261_rna_073965_119 crossref_primary_10_1146_annurev_virology_100114_055127 crossref_primary_10_1186_s12864_017_3903_3 crossref_primary_10_1016_j_virusres_2018_02_002 crossref_primary_10_1016_j_cub_2020_06_057 crossref_primary_10_1016_j_virusres_2019_197751 crossref_primary_10_1093_ve_vez017 crossref_primary_10_3390_biom13121706 crossref_primary_10_1371_journal_ppat_1006881 crossref_primary_10_1016_j_cub_2024_04_085 crossref_primary_10_1146_annurev_ento_033020_090410 crossref_primary_10_1038_s41467_023_43186_2 crossref_primary_10_1007_s00018_015_1947_6 crossref_primary_10_1016_j_virusres_2018_04_006 crossref_primary_10_1016_j_celrep_2018_06_045 crossref_primary_10_1292_jvms_16_0274 crossref_primary_10_1261_rna_052092_115 crossref_primary_10_1093_ve_veab076 crossref_primary_10_1128_jvi_00997_24 crossref_primary_10_2222_jsv_70_49 crossref_primary_10_3390_ijms17040435 crossref_primary_10_1016_j_biochi_2015_08_008 crossref_primary_10_1128_JVI_02030_20 crossref_primary_10_1371_journal_ppat_1005785 crossref_primary_10_7717_peerj_5679 crossref_primary_10_1371_journal_pone_0186450 crossref_primary_10_1007_s00401_015_1511_3 crossref_primary_10_1016_j_celrep_2015_08_007 crossref_primary_10_1128_JVI_01621_18 crossref_primary_10_1093_ve_vew035 crossref_primary_10_1093_molbev_msaa180 crossref_primary_10_1266_ggs_18_00049 crossref_primary_10_2222_jsv_64_225 crossref_primary_10_1128_mBio_02209_20 crossref_primary_10_3390_v15030589 crossref_primary_10_1038_srep35548 crossref_primary_10_1292_jvms_18_0211 crossref_primary_10_3892_br_2022_1512 crossref_primary_10_1016_j_coviro_2017_07_021 crossref_primary_10_1056_NEJMoa1415627 crossref_primary_10_1080_2159256X_2016_1165785 crossref_primary_10_1016_j_cois_2021_12_007 crossref_primary_10_1007_s00103_019_02904_2 crossref_primary_10_1073_pnas_2114441119 crossref_primary_10_1016_j_mib_2016_03_002 crossref_primary_10_1071_MA21036 crossref_primary_10_1128_JVI_02124_18 crossref_primary_10_1073_pnas_2010758118 crossref_primary_10_1016_j_it_2019_09_003 crossref_primary_10_1073_pnas_2108123118 crossref_primary_10_2222_jsv_65_145 crossref_primary_10_3389_fmicb_2018_03171 crossref_primary_10_3390_v16030395 crossref_primary_10_1016_j_biologicals_2016_04_004 crossref_primary_10_2222_jsv_66_39 crossref_primary_10_3390_ijms20061318 crossref_primary_10_2903_j_efsa_2017_4951 crossref_primary_10_1038_s41564_024_01825_4 crossref_primary_10_3389_fmicb_2017_02537 crossref_primary_10_3201_eid2303_161061 crossref_primary_10_3389_fmicb_2021_773211 crossref_primary_10_1016_j_cois_2021_10_007 crossref_primary_10_1038_srep25873 crossref_primary_10_7554_eLife_58436 crossref_primary_10_1038_nm0717_791 crossref_primary_10_1038_gt_2015_108 crossref_primary_10_1111_cmi_12515 crossref_primary_10_1146_annurev_virology_110615_042323 crossref_primary_10_1016_j_coviro_2018_07_011 crossref_primary_10_1002_1873_3468_14290 crossref_primary_10_1111_nyas_14097 crossref_primary_10_1128_JVI_00571_17 crossref_primary_10_2222_jsv_72_159 crossref_primary_10_1002_cti2_1114 crossref_primary_10_1371_journal_pgen_1005470 crossref_primary_10_1128_JVI_01204_20 crossref_primary_10_1016_j_coviro_2016_09_011 crossref_primary_10_1128_JVI_00404_19 crossref_primary_10_3390_v7112906 crossref_primary_10_1128_JVI_03653_14 crossref_primary_10_1371_journal_ppat_1006017 crossref_primary_10_1146_annurev_virology_092818_015613 crossref_primary_10_1016_j_coviro_2017_06_004 crossref_primary_10_4044_joma_134_10 crossref_primary_10_3390_v15071420 crossref_primary_10_1016_j_cois_2021_11_005 crossref_primary_10_1080_22221751_2019_1599302 crossref_primary_10_1152_physrev_00021_2019 |
Cites_doi | 10.1073/pnas.1100118108 10.1016/j.chom.2012.04.009 10.1038/msb4100134 10.1016/S1286-4579(02)01564-2 10.1006/viro.1998.9049 10.1128/JVI.01351-06 10.1128/JVI.80.10.4748-4757.2006 10.1038/nature08695 10.1128/JVI.01214-07 10.1073/pnas.0406509102 10.1096/fasebj.6.8.1592206 10.1016/j.str.2003.08.011 10.1007/s00018-008-8500-9 10.1002/emmm.201100140 10.1073/pnas.0402877101 10.1007/s11481-010-9214-y 10.1038/382826a0 10.1111/j.1365-2133.2009.09415.x 10.1128/JVI.80.3.1121-1129.2006 10.1128/JVI.00301-12 10.1007/BF01728655 10.1016/j.micinf.2006.01.010 10.1371/journal.ppat.1000654 10.20506/rst.17.1.1080 10.1099/0022-1317-80-1-97 10.1016/j.placenta.2012.05.005 10.1128/JVI.75.7.3404-3412.2001 10.1016/j.virol.2009.11.016 10.1074/jbc.273.15.9007 10.1038/ni1125 10.1016/j.tree.2012.07.007 10.1002/path.4168 10.1128/JVI.05554-11 10.1073/pnas.0404838101 10.1371/journal.ppat.1001030 10.1038/35001608 10.1111/j.0022-202X.2005.23816.x 10.1128/JVI.77.7.4283-4290.2003 10.1099/0022-1317-79-12-2957 10.1128/JVI.77.1.749-753.2003 10.1016/S0959-437X(00)00138-6 10.1371/journal.pgen.1001191 10.1128/JVI.77.21.11781-11789.2003 10.1038/nrmicro2783 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 9, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 9, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1407046111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef MEDLINE AGRICOLA AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Inhibition of BDV replication by a squirrel EBLN |
EISSN | 1091-6490 |
EndPage | 13180 |
ExternalDocumentID | PMC4246967 3438684721 25157155 10_1073_pnas_1407046111 111_36_13175 43043300 US201600143999 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c668t-a925bbc29cacdf73079e50ddbbe0b73dcfc5a42b658410c07acc71ef479aa78d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:50:46 EDT 2025 Thu Jul 10 22:37:39 EDT 2025 Fri Jul 11 11:02:03 EDT 2025 Fri Jul 11 15:16:36 EDT 2025 Mon Jun 30 08:29:48 EDT 2025 Thu Apr 03 07:08:35 EDT 2025 Tue Jul 01 01:53:13 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Nov 11 00:30:12 EST 2020 Thu May 29 08:40:54 EDT 2025 Wed Dec 27 19:13:24 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | antiviral immunity endogenous nonretroviral viruses |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c668t-a925bbc29cacdf73079e50ddbbe0b73dcfc5a42b658410c07acc71ef479aa78d3 |
Notes | http://dx.doi.org/10.1073/pnas.1407046111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: K.F. and K.T. designed research; K.F., M.H., T.H., D.K.M., and K.T. performed research; D.K.M. contributed new reagents/analytic tools; M.H., T.H., and K.T. analyzed data; and K.F. and K.T. wrote the paper. Edited* by John M. Coffin, Tufts University School of Medicine, Boston, MA, and approved July 24, 2014 (received for review April 17, 2014) 1Present address; Department of Microbiology II, School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan. 2Present address; Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/36/13175.full.pdf |
PMID | 25157155 |
PQID | 1564000272 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1564000272 proquest_miscellaneous_1566855561 proquest_miscellaneous_1561470079 pubmed_primary_25157155 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246967 crossref_primary_10_1073_pnas_1407046111 pnas_primary_111_36_13175 fao_agris_US201600143999 proquest_miscellaneous_1803090915 crossref_citationtrail_10_1073_pnas_1407046111 jstor_primary_43043300 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-09 |
PublicationDateYYYYMMDD | 2014-09-09 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Sasaki S (e_1_3_3_24_2) 1993; 40 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 Suzuki Y (e_1_3_3_20_2) e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 8237200 - Zentralbl Veterinarmed B. 1993 Jun;40(4):291-7 11238866 - J Virol. 2001 Apr;75(7):3404-12 19893625 - PLoS Pathog. 2009 Nov;5(11):e1000654 14527390 - Structure. 2003 Oct;11(10):1219-26 15263098 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11117-22 17353931 - Mol Syst Biol. 2007;3:89 11932200 - Microbes Infect. 2002 Apr;4(4):491-500 22901901 - Trends Ecol Evol. 2012 Nov;27(11):627-36 22607802 - Cell Host Microbe. 2012 May 17;11(5):492-503 16697679 - Microbes Infect. 2006 May;8(6):1522-9 15644441 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):725-30 14557662 - J Virol. 2003 Nov;77(21):11781-9 22695103 - Placenta. 2012 Sep;33(9):663-71 16641268 - J Virol. 2006 May;80(10):4748-57 15310846 - Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9 10693809 - Nature. 2000 Feb 17;403(6771):785-9 11088016 - Curr Opin Genet Dev. 2000 Dec;10(6):651-5 22565131 - Nat Rev Microbiol. 2012 Jun;10(6):395-406 17079312 - J Virol. 2007 Jan;81(2):743-9 21436027 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5771-6 20686665 - PLoS Pathog. 2010;6(7):e1001030 9638816 - Rev Sci Tech. 1998 Apr;17(1):269-77 20422298 - J Neuroimmune Pharmacol. 2010 Sep;5(3):326-35 19945724 - Virology. 2010 Feb 5;397(1):64-72 8752279 - Nature. 1996 Aug 29;382(6594):826-9 21937656 - J Virol. 2011 Dec;85(23):12170-8 12634385 - J Virol. 2003 Apr;77(7):4283-90 9934690 - J Gen Virol. 1999 Jan;80 ( Pt 1):97-100 21124940 - PLoS Genet. 2010 Nov;6(11):e1001191 17699582 - J Virol. 2007 Oct;81(20):11441-51 20054395 - Nature. 2010 Jan 7;463(7277):84-7 1592206 - FASEB J. 1992 May;6(8):2537-44 12477881 - J Virol. 2003 Jan;77(1):749-53 16414989 - J Virol. 2006 Feb;80(3):1121-9 9535888 - J Biol Chem. 1998 Apr 10;273(15):9007-12 23335387 - J Pathol. 2013 May;230(1):59-69 19785608 - Br J Dermatol. 2009 Dec;161(6):1225-31 21542132 - EMBO Mol Med. 2011 Jun;3(6):320-33 25475938 - Genes Genet Syst. 2014;89(3):143-8 9527928 - Virology. 1998 Mar 30;243(1):188-97 18818869 - Cell Mol Life Sci. 2008 Nov;65(21):3422-32 22855497 - J Virol. 2012 Oct;86(20):11194-208 9880009 - J Gen Virol. 1998 Dec;79 ( Pt 12):2957-63 16098038 - J Invest Dermatol. 2005 Aug;125(2):278-87 8828142 - Virus Genes. 1995;11(2-3):147-61 15496950 - Nat Immunol. 2004 Nov;5(11):1109-15 |
References_xml | – ident: e_1_3_3_37_2 doi: 10.1073/pnas.1100118108 – ident: e_1_3_3_21_2 doi: 10.1016/j.chom.2012.04.009 – ident: e_1_3_3_44_2 doi: 10.1038/msb4100134 – ident: e_1_3_3_20_2 article-title: Origin of endogenous bornavirus-like nucleoprotein elements in thirteen-lined ground squirrels publication-title: Genes Genet Syst – ident: e_1_3_3_19_2 doi: 10.1016/S1286-4579(02)01564-2 – ident: e_1_3_3_27_2 doi: 10.1006/viro.1998.9049 – ident: e_1_3_3_23_2 doi: 10.1128/JVI.01351-06 – ident: e_1_3_3_7_2 doi: 10.1128/JVI.80.10.4748-4757.2006 – ident: e_1_3_3_16_2 doi: 10.1038/nature08695 – ident: e_1_3_3_40_2 doi: 10.1128/JVI.01214-07 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0406509102 – ident: e_1_3_3_4_2 doi: 10.1096/fasebj.6.8.1592206 – ident: e_1_3_3_30_2 doi: 10.1016/j.str.2003.08.011 – ident: e_1_3_3_38_2 doi: 10.1007/s00018-008-8500-9 – ident: e_1_3_3_13_2 doi: 10.1002/emmm.201100140 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0402877101 – ident: e_1_3_3_6_2 doi: 10.1007/s11481-010-9214-y – volume: 40 start-page: 291 year: 1993 ident: e_1_3_3_24_2 article-title: In borna disease virus infected rabbit neurons 100 nm particle structures accumulate at areas of Joest-Degen inclusion bodies publication-title: Zentralbl Veterinarmed B – ident: e_1_3_3_36_2 doi: 10.1038/382826a0 – ident: e_1_3_3_5_2 doi: 10.1111/j.1365-2133.2009.09415.x – ident: e_1_3_3_34_2 doi: 10.1128/JVI.80.3.1121-1129.2006 – ident: e_1_3_3_41_2 doi: 10.1128/JVI.00301-12 – ident: e_1_3_3_8_2 doi: 10.1007/BF01728655 – ident: e_1_3_3_26_2 doi: 10.1016/j.micinf.2006.01.010 – ident: e_1_3_3_35_2 doi: 10.1371/journal.ppat.1000654 – ident: e_1_3_3_14_2 doi: 10.20506/rst.17.1.1080 – ident: e_1_3_3_33_2 doi: 10.1099/0022-1317-80-1-97 – ident: e_1_3_3_43_2 doi: 10.1016/j.placenta.2012.05.005 – ident: e_1_3_3_29_2 doi: 10.1128/JVI.75.7.3404-3412.2001 – ident: e_1_3_3_31_2 doi: 10.1016/j.virol.2009.11.016 – ident: e_1_3_3_32_2 doi: 10.1074/jbc.273.15.9007 – ident: e_1_3_3_42_2 doi: 10.1038/ni1125 – ident: e_1_3_3_10_2 doi: 10.1016/j.tree.2012.07.007 – ident: e_1_3_3_45_2 doi: 10.1002/path.4168 – ident: e_1_3_3_46_2 doi: 10.1128/JVI.05554-11 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.0404838101 – ident: e_1_3_3_17_2 doi: 10.1371/journal.ppat.1001030 – ident: e_1_3_3_9_2 doi: 10.1038/35001608 – ident: e_1_3_3_12_2 doi: 10.1111/j.0022-202X.2005.23816.x – ident: e_1_3_3_25_2 doi: 10.1128/JVI.77.7.4283-4290.2003 – ident: e_1_3_3_28_2 doi: 10.1099/0022-1317-79-12-2957 – ident: e_1_3_3_39_2 doi: 10.1128/JVI.77.1.749-753.2003 – ident: e_1_3_3_1_2 doi: 10.1016/S0959-437X(00)00138-6 – ident: e_1_3_3_18_2 doi: 10.1371/journal.pgen.1001191 – ident: e_1_3_3_22_2 doi: 10.1128/JVI.77.21.11781-11789.2003 – ident: e_1_3_3_3_2 doi: 10.1038/nrmicro2783 – reference: 15644441 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):725-30 – reference: 20686665 - PLoS Pathog. 2010;6(7):e1001030 – reference: 8237200 - Zentralbl Veterinarmed B. 1993 Jun;40(4):291-7 – reference: 21436027 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5771-6 – reference: 11238866 - J Virol. 2001 Apr;75(7):3404-12 – reference: 16414989 - J Virol. 2006 Feb;80(3):1121-9 – reference: 15310846 - Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9 – reference: 8828142 - Virus Genes. 1995;11(2-3):147-61 – reference: 9934690 - J Gen Virol. 1999 Jan;80 ( Pt 1):97-100 – reference: 22695103 - Placenta. 2012 Sep;33(9):663-71 – reference: 16641268 - J Virol. 2006 May;80(10):4748-57 – reference: 8752279 - Nature. 1996 Aug 29;382(6594):826-9 – reference: 21937656 - J Virol. 2011 Dec;85(23):12170-8 – reference: 21124940 - PLoS Genet. 2010 Nov;6(11):e1001191 – reference: 9638816 - Rev Sci Tech. 1998 Apr;17(1):269-77 – reference: 16098038 - J Invest Dermatol. 2005 Aug;125(2):278-87 – reference: 11932200 - Microbes Infect. 2002 Apr;4(4):491-500 – reference: 16697679 - Microbes Infect. 2006 May;8(6):1522-9 – reference: 19785608 - Br J Dermatol. 2009 Dec;161(6):1225-31 – reference: 19893625 - PLoS Pathog. 2009 Nov;5(11):e1000654 – reference: 9527928 - Virology. 1998 Mar 30;243(1):188-97 – reference: 9535888 - J Biol Chem. 1998 Apr 10;273(15):9007-12 – reference: 19945724 - Virology. 2010 Feb 5;397(1):64-72 – reference: 18818869 - Cell Mol Life Sci. 2008 Nov;65(21):3422-32 – reference: 12477881 - J Virol. 2003 Jan;77(1):749-53 – reference: 14527390 - Structure. 2003 Oct;11(10):1219-26 – reference: 11088016 - Curr Opin Genet Dev. 2000 Dec;10(6):651-5 – reference: 14557662 - J Virol. 2003 Nov;77(21):11781-9 – reference: 22855497 - J Virol. 2012 Oct;86(20):11194-208 – reference: 10693809 - Nature. 2000 Feb 17;403(6771):785-9 – reference: 15263098 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11117-22 – reference: 1592206 - FASEB J. 1992 May;6(8):2537-44 – reference: 21542132 - EMBO Mol Med. 2011 Jun;3(6):320-33 – reference: 22565131 - Nat Rev Microbiol. 2012 Jun;10(6):395-406 – reference: 20054395 - Nature. 2010 Jan 7;463(7277):84-7 – reference: 17353931 - Mol Syst Biol. 2007;3:89 – reference: 17079312 - J Virol. 2007 Jan;81(2):743-9 – reference: 22901901 - Trends Ecol Evol. 2012 Nov;27(11):627-36 – reference: 20422298 - J Neuroimmune Pharmacol. 2010 Sep;5(3):326-35 – reference: 12634385 - J Virol. 2003 Apr;77(7):4283-90 – reference: 22607802 - Cell Host Microbe. 2012 May 17;11(5):492-503 – reference: 25475938 - Genes Genet Syst. 2014;89(3):143-8 – reference: 9880009 - J Gen Virol. 1998 Dec;79 ( Pt 12):2957-63 – reference: 23335387 - J Pathol. 2013 May;230(1):59-69 – reference: 15496950 - Nat Immunol. 2004 Nov;5(11):1109-15 – reference: 17699582 - J Virol. 2007 Oct;81(20):11441-51 |
SSID | ssj0009580 |
Score | 2.4618979 |
Snippet | Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented,... Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral... Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13175 |
SubjectTerms | Amino Acid Sequence Amino acids Animals Base Sequence Biological Sciences Borna Disease - transmission Borna Disease - virology Borna disease virus Borna disease virus - physiology Cell lines Cercopithecus aethiops Conserved Sequence - genetics DNA DNA-Directed DNA Polymerase - metabolism evolution genome Genome - genetics Genomes HEK293 Cells hosts Humans Infections Molecular Sequence Data Mononegavirales Protein Structure, Tertiary Proteins Replicon - genetics Retroviridae Retrovirus Ribonucleoproteins - metabolism RNA Sciuridae Sciuridae - genetics Sciuridae - virology Small mammals Spermophilus Transfection Vero Cells vertebrates Viral Proteins - chemistry Viral Proteins - metabolism virus replication Virus Replication - genetics Viruses |
Title | Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome |
URI | https://www.jstor.org/stable/43043300 http://www.pnas.org/content/111/36/13175.abstract https://www.ncbi.nlm.nih.gov/pubmed/25157155 https://www.proquest.com/docview/1564000272 https://www.proquest.com/docview/1561470079 https://www.proquest.com/docview/1566855561 https://www.proquest.com/docview/1803090915 https://pubmed.ncbi.nlm.nih.gov/PMC4246967 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa28cILYsBYYCAj8TBUZeTixPXjQJsKbGUSrbS3yHYcFjaSaW2Rxp_hr3Ls2ElaxjR4iarYdaKcL-finPMdhF5zkVMRxsQXiiifCEJ0sbL0SazJWPKEFqZu7Xicjqbk42lyurb2q5e1tJiLPfnzxrqS_5EqnAO56irZf5BsuyicgN8gXziChOF4Jxl_qM5KUTqf751uNuy-uAx-lFcL80nA7cppRxNeZlXltSVmFfoPZp5_UZ6rgWpSyV3qoy740LvqOlf4Sl3oZssr1AYnrfWbuVyDsdtc3O9KVaz-mA38wcm4a3x8uPhWmsbfg08dREe1bfB1zGf8enFedgNVbhzdSf297g8ca25Ju48LGOZ249buZITEpGqxvnaOwGKSpqa61c5WFzcwjNPB5V6ofR4fjk0PKKt6zdmeHW_H_zASoNV0Z-OKz8BOgMojqbvIEh33-HN2OD06yiYHp5N1dC-COMRkjo76rM7DpsbJ3rjjjqLx25Xll9ye9YLXLv9Vk-rC1JsCnNU83Z7jM3mIHtiIBe838NtEa6p6hDadTPGuJS5_8xjNOzziusAGj9jiERuc4R4esbjGvMIdHvEKHrHFIy4rDNDCDR6xwyNu8PgETQ8PJu9Hvu3q4cs0Hc59zqJECBkxyWVegIGhTCVBnguhAkHjXBYy4SQS2jUOAxlQLiUNVUEo45wO83gLbVR1pbYRZoEiXNKUyZyTXDKhmAoLlg-lZJHIUw_tuYeeSUt5rzuvXGQm9YLGmX70WSclD-22f7hs2F7-PnUbpJjxr2CLs-mXSDM1aq5MCLg8tGVE2y4Bio_EcRB4yDOrtEtD8B2nmUGuh3YcADKrYuBySUpMckDkoVftMBgA_VWPVwpko-eEhIKrz26dkw4T3Qn3ljlD_bUVwge4lacN7tobhSAooRB5eIguIbKdoEnql0eq8syQ1cNbkbKUPrvDdZ-j-51a2EEb86uFegEu_1y8NK_dbyZFA5k |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+Borna+disease+virus+replication+by+an+endogenous+bornavirus-like+element+in+the+ground+squirrel+genome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fujino%2C+Kan&rft.au=Horie%2C+Masayuki&rft.au=Honda%2C+Tomoyuki&rft.au=Merriman%2C+Dana+K&rft.date=2014-09-09&rft.issn=0027-8424&rft.volume=111&rft.issue=36+p.13175-13180&rft.spage=13175&rft.epage=13180&rft_id=info:doi/10.1073%2Fpnas.1407046111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F36.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F36.cover.gif |