Spatial relationships between bone formation and mechanical stress within cancellous bone

Abstract Bone adapts to mechanical stimuli. While in vivo mechanical loading has been shown to increase the density of cancellous bone, theory suggests that the relationship between tissue stress/strain and subsequent bone formation occurs at the scale of individual trabeculae. Here we examine bone...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 49; no. 2; pp. 222 - 228
Main Authors Cresswell, E.N, Goff, M.G, Nguyen, T.M, Lee, W.X, Hernandez, C.J
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 25.01.2016
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Bone adapts to mechanical stimuli. While in vivo mechanical loading has been shown to increase the density of cancellous bone, theory suggests that the relationship between tissue stress/strain and subsequent bone formation occurs at the scale of individual trabeculae. Here we examine bone formation one week following mechanical stimulus. Three bouts of cyclic loading (300 cycles/day on 3 consecutive days) were applied to caudal vertebrae of female rats ( n =7). Bone formation was determined using three-dimensional images of fluorescent markers of bone formation (0.7×0.7×5.0 μm3 ) and local tissue stress/strain was determined using high-resolution finite element models. Three days of mechanical stimuli resulted in an increase in mineralizing surface (loaded: 17.68±2.17%; control: 9.05±3.20%; mean±SD) and an increase in the volume of bone formed (loaded: 7.09±1.97%; control: 1.44±0.50%). The number of bone formation sites was greater in loaded animals (650.71±118.54) than pinned not loaded controls (310.71±91.55), a difference that was explained by the number of formation sites at regions with large local tissue strain energy density (SED). In addition, the probability of observing bone formation was greater at locations of the microstructure experiencing greater SED, but did not exceed 32%, consistent with prior work. Our findings demonstrate that bone formation in the week following a short term mechanical stimulus occurs near regions of bone tissue experiencing high tissue SED, although the ability of finite element models to predict the locations of bone formation remains modest and further improvements may require accounting for additional factors such as osteocyte distribution or fluid flow.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2015.12.011