Transient enhancement of inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons after cerebral ischemia

Abstract Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 160; no. 2; pp. 412 - 418
Main Authors Liang, R, Pang, Z.-P, Deng, P, Xu, Z.C
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 05.05.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission in the hippocampus following reperfusion. We examined the GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons 12 and 24 h after transient forebrain ischemia in rats. The amplitudes of evoked inhibitory postsynaptic currents (eIPSCs) were increased significantly 12 h after ischemia and returned to control levels 24 h following reperfusion. The potentiation of eIPSCs was accompanied by an increase of miniature inhibitory postsynaptic current (mIPSC) amplitude, and an enhanced response to exogenous application of GABA, indicating the involvement of postsynaptic mechanisms. Furthermore, there was no obvious change of the paired-pulse ratio (PPR) of eIPSCs and the frequency of mIPSCs, suggesting that the potentiation of eIPSCs might not be due to the increased presynaptic release. Blockade of adenosine A1 receptors led to a decrease of eIPSCs amplitude in post-ischemic neurons but not in control neurons, without affecting the frequency of mIPSCs and the PPR of eIPSCs. Thus, tonic activation of adenosine A1 receptors might, at least in part, contribute to the enhancement of inhibitory synaptic transmission in CA1 neurons after forebrain ischemia. The transient enhancement of inhibitory neurotransmission might temporarily protect CA1 pyramidal neurons, and delay the process of neuronal death after cerebral ischemia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2009.02.046