Networking in the Plant Microbiome

Almost all higher organisms, including plants, insects, and mammals, are colonized by complex microbial communities and harbor a microbiome. Emerging studies with plants reveal that these microbiomes are structured and form complex, interconnected microbial networks. Within these networks, different...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 14; no. 2; p. e1002378
Main Authors van der Heijden, Marcel G. A., Hartmann, Martin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 12.02.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Almost all higher organisms, including plants, insects, and mammals, are colonized by complex microbial communities and harbor a microbiome. Emerging studies with plants reveal that these microbiomes are structured and form complex, interconnected microbial networks. Within these networks, different taxa have different roles, and keystone species have been identified that could be crucial for plant health and ecosystem functioning. A new paper in this issue of PLOS Biology by Agler et al. highlights the presence of microbial hubs in these networks that may act as mediators between the plant and its microbiome. A next major frontier is now to link microbiome composition to function. In order to do this, we present a number of hypothetical examples of how microbiome diversity and function potentially influence host performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Commentary-3
content type line 23
The authors have declared that no competing interests exist.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.1002378