Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania
Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics...
Saved in:
Published in | PLoS biology Vol. 12; no. 5; p. e1001868 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.05.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment. |
---|---|
Bibliography: | The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: JMU FR AM PL JC MO. Performed the experiments: JMU FR AM MP HG GR AL. Analyzed the data: JMU FR AM PL BP JC MO. Contributed reagents/materials/analysis tools: FR JC. Wrote the paper: JMU PL BP JC MO. Current address: Centre de Génétique et de Physiologie Moléculaire et Cellulaire UMR5534, Université Claude Bernard Lyon 1, Villeurbanne, France Current address: Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America The authors have declared that no competing interests exist. |
ISSN: | 1545-7885 1544-9173 1545-7885 |
DOI: | 10.1371/journal.pbio.1001868 |