Short Lives with Long-Lasting Effects: Filopodia Protrusions in Neuronal Branching Morphogenesis

The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branch...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 13; no. 9; p. e1002241
Main Authors Leondaritis, George, Eickholt, Britta Johanna
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca2+/CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.1002241