DeTOKI identifies and characterizes the dynamics of chromatin TAD-like domains in a single cell
Topologically associating domains (TAD) are a key structure of the 3D mammalian genomes. However, the prevalence and dynamics of TAD-like domains in single cells remain elusive. Here we develop a new algorithm, named deTOKI, to decode TAD-like domains with single-cell Hi-C data. By non-negative matr...
Saved in:
Published in | Genome Biology Vol. 22; no. 1; p. 217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
27.07.2021
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Topologically associating domains (TAD) are a key structure of the 3D mammalian genomes. However, the prevalence and dynamics of TAD-like domains in single cells remain elusive. Here we develop a new algorithm, named deTOKI, to decode TAD-like domains with single-cell Hi-C data. By non-negative matrix factorization, deTOKI seeks regions that insulate the genome into blocks with minimal chance of clustering. deTOKI outperforms competing tools and reliably identifies TAD-like domains in single cells. Finally, we find that TAD-like domains are not only prevalent, but also subject to tight regulation in single cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1474-760X 1474-7596 1474-760X |
DOI: | 10.1186/s13059-021-02435-7 |