Comparative genomics and community curation further improve gene annotations in the nematode Pristionchus pacificus

Nematode model organisms such as Caenorhabditis elegans and Pristionchus pacificus are powerful systems for studying the evolution of gene function at a mechanistic level. However, the identification of P. pacificus orthologs of candidate genes known from C. elegans is complicated by the discrepancy...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 21; no. 1; p. 708
Main Authors Athanasouli, Marina, Witte, Hanh, Weiler, Christian, Loschko, Tobias, Eberhardt, Gabi, Sommer, Ralf J, Rödelsperger, Christian
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 12.10.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nematode model organisms such as Caenorhabditis elegans and Pristionchus pacificus are powerful systems for studying the evolution of gene function at a mechanistic level. However, the identification of P. pacificus orthologs of candidate genes known from C. elegans is complicated by the discrepancy in the quality of gene annotations, a common problem in nematode and invertebrate genomics. Here, we combine comparative genomic screens for suspicious gene models with community-based curation to further improve the quality of gene annotations in P. pacificus. We extend previous curations of one-to-one orthologs to larger gene families and also orphan genes. Cross-species comparisons of protein lengths, screens for atypical domain combinations and species-specific orphan genes resulted in 4311 candidate genes that were subject to community-based curation. Corrections for 2946 gene models were implemented in a new version of the P. pacificus gene annotations. The new set of gene annotations contains 28,896 genes and has a single copy ortholog completeness level of 97.6%. Our work demonstrates the effectiveness of comparative genomic screens to identify suspicious gene models and the scalability of community-based approaches to improve the quality of thousands of gene models. Similar community-based approaches can help to improve the quality of gene annotations in other invertebrate species, including parasitic nematodes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-020-07100-0