Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium

S. Typhi, a human-restricted Salmonella enterica serovar, causes a systemic intracellular infection in humans (typhoid fever). In comparison, S. Typhimurium causes gastroenteritis in humans, but causes a systemic typhoidal illness in mice. The PhoP regulon is a well studied two component (PhoP/Q) co...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 4; no. 9; p. e6994
Main Authors Charles, Richelle C, Harris, Jason B, Chase, Michael R, Lebrun, Lauren M, Sheikh, Alaullah, LaRocque, Regina C, Logvinenko, Tanya, Rollins, Sean M, Tarique, Abdullah, Hohmann, Elizabeth L, Rosenberg, Ian, Krastins, Bryan, Sarracino, David A, Qadri, Firdausi, Calderwood, Stephen B, Ryan, Edward T
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.09.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:S. Typhi, a human-restricted Salmonella enterica serovar, causes a systemic intracellular infection in humans (typhoid fever). In comparison, S. Typhimurium causes gastroenteritis in humans, but causes a systemic typhoidal illness in mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately regulated network of genes whose expression is required for intracellular survival of S. enterica. Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS), we examined the protein expression profiles of three sequenced S. enterica strains: S. Typhimurium LT2, S. Typhi CT18, and S. Typhi Ty2 in PhoP-inducing and non-inducing conditions in vitro and compared these results to profiles of phoP(-)/Q(-) mutants derived from S. Typhimurium LT2 and S. Typhi Ty2. Our analysis identified 53 proteins in S. Typhimurium LT2 and 56 proteins in S. Typhi that were regulated in a PhoP-dependent manner. As expected, many proteins identified in S. Typhi demonstrated concordant differential expression with a homologous protein in S. Typhimurium. However, three proteins (HlyE, STY1499, and CdtB) had no homolog in S. Typhimurium. HlyE is a pore-forming toxin. STY1499 encodes a stably expressed protein of unknown function transcribed in the same operon as HlyE. CdtB is a cytolethal distending toxin associated with DNA damage, cell cycle arrest, and cellular distension. Gene expression studies confirmed up-regulation of mRNA of HlyE, STY1499, and CdtB in S. Typhi in PhoP-inducing conditions. This study is the first protein expression study of the PhoP virulence associated regulon using strains of Salmonella mutant in PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499) that are not present in the genome of the wide host-range Typhimurium, and includes the first protein expression profiling of a live attenuated bacterial vaccine studied in humans (Ty800).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: RCC JBH AS RCL ELH FQ SBC ETR. Performed the experiments: RCC JBH MRC LML AS SMR AT IR BK DAS. Analyzed the data: RCC JBH MRC LML AS RCL TL AT IR BK DAS SBC ETR. Contributed reagents/materials/analysis tools: MRC ELH IR BK DAS. Wrote the paper: RCC JBH MRC LML AS TL AT ELH IR BK DAS FQ SBC ETR.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0006994