Reading about the actions of others: Biological motion imagery and action congruency influence brain activity
Prior neuroimaging research has implicated regions within and near the posterior superior temporal sulcus (pSTS) in the visual processing of biological motion and of the intentions implied by specific movements. However, it is unknown whether this region is engaged during the processing of human mot...
Saved in:
Published in | Neuropsychologia Vol. 48; no. 6; pp. 1607 - 1615 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0028-3932 1873-3514 1873-3514 |
DOI | 10.1016/j.neuropsychologia.2010.01.028 |
Cover
Loading…
Summary: | Prior neuroimaging research has implicated regions within and near the posterior superior temporal sulcus (pSTS) in the visual processing of biological motion and of the intentions implied by specific movements. However, it is unknown whether this region is engaged during the processing of human motion at a conceptual level, such as during story comprehension. Here, we obtained functional magnetic resonance images from subjects reading brief stories that described a human character's background and then concluded with an action or decision made by the character. Half of the stories contained incidental descriptions of biological motion (such as the character's walking or grasping) while the remaining half did not. As a second factor, the final action of the story was either congruent or incongruent with the character's background and implied goals and intentions. Stories that contained biological motion strongly activated the pSTS bilaterally, along with ventral temporal areas, premotor cortex, left motor cortex, and the precuneus. Active regions of pSTS in individual subjects closely overlapped with regions identified with a separate biological motion localizer (point-light display) task. Reading incongruent versus congruent stories activated dorsal anterior cingulate cortex and bilateral anterior insula. These results support the hypothesis that reading can engage higher visual cortex in a content-specific manner, and suggest that the presence of biological motion should be controlled as a potential confound in fMRI studies using story comprehension tasks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0028-3932 1873-3514 1873-3514 |
DOI: | 10.1016/j.neuropsychologia.2010.01.028 |