Deep mutational scans of XBB.1.5 and BQ.1.1 reveal ongoing epistatic drift during SARS-CoV-2 evolution

Substitutions that fix between SARS-CoV-2 variants can transform the mutational landscape of future evolution via epistasis. For example, large epistatic shifts in mutational effects caused by N501Y underlied the original emergence of Omicron, but whether such epistatic saltations continue to define...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 19; no. 12; p. e1011901
Main Authors Taylor, Ashley L., Starr, Tyler N.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 29.12.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Substitutions that fix between SARS-CoV-2 variants can transform the mutational landscape of future evolution via epistasis. For example, large epistatic shifts in mutational effects caused by N501Y underlied the original emergence of Omicron, but whether such epistatic saltations continue to define ongoing SARS-CoV-2 evolution remains unclear. We conducted deep mutational scans to measure the impacts of all single amino acid mutations and single-codon deletions in the spike receptor-binding domain (RBD) on ACE2-binding affinity and protein expression in the recent Omicron BQ.1.1 and XBB.1.5 variants, and we compared mutational patterns to earlier viral strains that we have previously profiled. As with previous deep mutational scans, we find many mutations that are tolerated or even enhance binding to ACE2 receptor. The tolerance of sites to single-codon deletion largely conforms with tolerance to amino acid mutation. Though deletions in the RBD have not yet been seen in dominant lineages, we observe tolerated deletions including at positions that exhibit indel variation across broader sarbecovirus evolution and in emerging SARS-CoV-2 variants of interest, most notably the well-tolerated Δ483 deletion in BA.2.86. The substitutions that distinguish recent viral variants have not induced as dramatic of epistatic perturbations as N501Y, but we identify ongoing epistatic drift in SARS-CoV-2 variants, including interaction between R493Q reversions and mutations at positions 453, 455, and 456, including F456L that defines the XBB.1.5-derived EG.5 lineage. Our results highlight ongoing drift in the effects of mutations due to epistasis, which may continue to direct SARS-CoV-2 evolution into new regions of sequence space.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal’s policy and the authors of this manuscript have the following competing interests: T.N.S. consults for Apriori Bio, Metaphore Biotechnologies, and Vir Biotechnology on deep mutational scanning. The lab of T.N.S. has received sponsored research agreements unrelated to the present work from Vir Biotechnology and Aerium Therapeutics, Inc. T.N.S. may receive a share of intellectual property revenue as inventor on a Fred Hutchinson Cancer Center-optioned patent related to stabilization of SARS-CoV-2 RBDs.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1011901