Beta human papillomavirus 8 E6 allows colocalization of non-homologous end joining and homologous recombination repair factors

Beta human papillomavirus (β-HPV) are hypothesized to make DNA damage more mutagenic and potentially more carcinogenic. Double strand breaks (DSBs) are the most deleterious DNA lesion. They are typically repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). HR occurs after...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 18; no. 2; p. e1010275
Main Authors Hu, Changkun, Bugbee, Taylor, Dacus, Dalton, Palinski, Rachel, Wallace, Nicholas
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Beta human papillomavirus (β-HPV) are hypothesized to make DNA damage more mutagenic and potentially more carcinogenic. Double strand breaks (DSBs) are the most deleterious DNA lesion. They are typically repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). HR occurs after DNA replication while NHEJ can occur at any point in the cell cycle. HR and NHEJ are not thought to occur in the same cell at the same time. HR is restricted to cells in phases of the cell cycle where homologous templates are available, while NHEJ occurs primarily during G1. β-HPV type 8 protein E6 (8E6) attenuates both repair pathways. We use a series of immunofluorescence microscopy and flow cytometry experiments to better define the impact of this attenuation. We found that 8E6 causes colocalization of HR factors (RPA70 and RAD51) with an NHEJ factor (activated DNA-PKcs or pDNA-PKcs) at persistent DSBs. 8E6 also causes RAD51 foci to form during G1. The initiation of NHEJ and HR at the same lesion could lead to antagonistic DNA end processing. Further, HR cannot be readily completed in an error-free manner during G1. Both aberrant repair events would cause deletions. To determine if these mutations were occurring, we used next generation sequencing of the 200kb surrounding a CAS9-induced DSB. 8E6 caused a 21-fold increase in deletions. Chemical and genetic inhibition of p300 as well as an 8E6 mutant that is incapable of destabilizing p300 demonstrates that 8E6 is acting via p300 destabilization. More specific chemical inhibitors of DNA repair provided mechanistic insight by mimicking 8E6-induced dysregulation of DNA repair in a virus-free system. Specifically, inhibition of NHEJ causes RAD51 foci to form in G1 and colocalization of RAD51 with pDNA-PKcs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1010275