DeepCRISPR: optimized CRISPR guide RNA design by deep learning
A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehen...
Saved in:
Published in | Genome Biology Vol. 19; no. 1; p. 80 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
26.06.2018
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehensive computational platform to unify sgRNA on-target and off-target site prediction into one framework with deep learning, surpassing available state-of-the-art in silico tools. In addition, DeepCRISPR fully automates the identification of sequence and epigenetic features that may affect sgRNA knockout efficacy in a data-driven manner. DeepCRISPR is available at http://www.deepcrispr.net/ . |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1474-760X 1474-7596 1474-760X |
DOI: | 10.1186/s13059-018-1459-4 |