Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico
Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborh...
Saved in:
Published in | PLoS neglected tropical diseases Vol. 5; no. 12; p. e1378 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.12.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: RB. Performed the experiments: RB MA AJM. Analyzed the data: RB. Contributed reagents/materials/analysis tools: RB MA AJM. Wrote the paper: RB. |
ISSN: | 1935-2735 1935-2727 1935-2735 |
DOI: | 10.1371/journal.pntd.0001378 |