Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease

The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accuratel...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 7; no. 12; p. e1002419
Main Authors Makarava, Natallia, Kovacs, Gabor G, Savtchenko, Regina, Alexeeva, Irina, Budka, Herbert, Rohwer, Robert G, Baskakov, Ilia V
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: NM IVB. Performed the experiments: NM GGK RS IA. Analyzed the data: NM GGK HB IVB. Contributed reagents/materials/analysis tools: IA RGR. Wrote the paper: IVB GGK HB.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1002419