Epidemiological analysis of the association between hearing and barium in humans

Our previous study experimentally showed barium (Ba)-mediated hearing loss in mice. To our knowledge, however, it remains unknown whether Ba affects hearing in humans. This epidemiological study aimed at investigating ototoxicity of Ba in humans. Associations of Ba levels in hair, toenails and urine...

Full description

Saved in:
Bibliographic Details
Published inJournal of exposure science & environmental epidemiology Vol. 26; no. 5; pp. 488 - 493
Main Authors Ohgami, Nobutaka, Mitsumatsu, Yuji, Ahsan, Nazmul, Akhand, Anwarul Azim, Li, Xiang, Iida, Machiko, Yajima, Ichiro, Naito, Mariko, Wakai, Kenji, Ohnuma, Shoko, Kato, Masashi
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.09.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Our previous study experimentally showed barium (Ba)-mediated hearing loss in mice. To our knowledge, however, it remains unknown whether Ba affects hearing in humans. This epidemiological study aimed at investigating ototoxicity of Ba in humans. Associations of Ba levels in hair, toenails and urine with hearing levels (1, 4, 8 and 12 kHz) were analyzed in 145 Bangladeshi subjects. Binary logistic regression analysis with adjustment for age, sex, body mass index (BMI) and smoking showed that Ba levels in hair had significant associations with hearing loss at 8 kHz (OR=4.75; 95% CI: 1.44, 17.68) and 12 kHz (OR=15.48; 95% CI: 4.04, 79.45). Ba levels in toenails were also associated with hearing loss at 8 kHz (OR=3.20; 95% CI: 1.35, 7.85) and 12 kHz (OR=3.63; 95% CI: 1.58, 8.55), whereas there was no correlation between Ba level in urinary samples and hearing. There was a significant correlation between hearing loss and Ba levels in hair and toenails in the model adjusted with arsenic levels as the confounder. In conclusion, this study suggested that Ba levels could be a new risk factor for hearing loss, especially at high frequencies of 8 and 12 kHz, in humans.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1559-0631
1559-064X
DOI:10.1038/jes.2015.62