Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits

We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with mul...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 5062
Main Authors Brown, Andrew A., Fernandez-Tajes, Juan J., Hong, Mun-gwan, Brorsson, Caroline A., Koivula, Robert W., Davtian, David, Dupuis, Théo, Sartori, Ambra, Michalettou, Theodora-Dafni, Forgie, Ian M., Adam, Jonathan, Allin, Kristine H., Caiazzo, Robert, Cederberg, Henna, De Masi, Federico, Elders, Petra J. M., Giordano, Giuseppe N., Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison J., Howald, Cédric, Jones, Angus G., Kokkola, Tarja, Laakso, Markku, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Mourby, Miranda, Musholt, Petra B., Nilsson, Birgitte, Pattou, Francois, Penet, Deborah, Raverdy, Violeta, Ridderstråle, Martin, Romano, Luciana, Rutters, Femke, Sharma, Sapna, Teare, Harriet, ‘t Hart, Leen, Tsirigos, Konstantinos D., Vangipurapu, Jagadish, Vestergaard, Henrik, Brunak, Søren, Franks, Paul W., Frost, Gary, Grallert, Harald, Jablonka, Bernd, McCarthy, Mark I., Pavo, Imre, Pedersen, Oluf, Ruetten, Hartmut, Walker, Mark, Adamski, Jerzy, Schwenk, Jochen M., Pearson, Ewan R., Dermitzakis, Emmanouil T., Viñuela, Ana
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue. Many genetic variants have been associated with human traits, but the mechanism is often unknown. Here, the authors integrate local and distal genetic associations with multi-omics datasets to provide a roadmap to understand the underlying mechanisms of GWAS variants on complex traits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40569-3