Comparative population structure of two deep-sea hydrothermal-vent-associated decapods (Chorocaris sp. 2 and Munidopsis lauensis) from southwestern Pacific back-arc basins

Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from vent effluent for survival. Relatively little attention has been paid to vent-associated species th...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 7; p. e101345
Main Authors Thaler, Andrew David, Plouviez, Sophie, Saleu, William, Alei, Freddie, Jacobson, Alixandra, Boyle, Emily A, Schultz, Thomas F, Carlsson, Jens, Van Dover, Cindy Lee
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.07.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from vent effluent for survival. Relatively little attention has been paid to vent-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two vent-associated invertebrates--the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis--that are common at deep-sea hydrothermal vents in the western Pacific. While Chorocaris sp. 2 has only been observed at hydrothermal vent sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of active vents We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the vent-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea hydrothermal vent ecosystems.
Bibliography:Conceived and designed the experiments: ADT SP TFS JC CLVD. Performed the experiments: ADT SP WS FA AJ EAB TFS. Analyzed the data: ADT SP WS FA AJ EAB TFS JC CLVD. Contributed reagents/materials/analysis tools: TFS JC. Wrote the paper: ADT SP CLVD.
Competing Interests: The authors recognize funding from Nautilus Minerals Ltd., a deep-sea mining company operating in Papua New Guinea, as a potential competing interest. While WS is currently in the employ of Nautilus Minerals, his contribution to the project was completed prior to that employment. This manuscript represents the original work of the authors and the funder had no role in study design, analysis, decision to publish, or preparation of the manuscript. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0101345