Evolution of dispersal and life history interact to drive accelerating spread of an invasive species

Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life‐history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to acceleratin...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 16; no. 8; pp. 1079 - 1087
Main Authors Alex Perkins, T., Phillips, Benjamin L., Baskett, Marissa L., Hastings, Alan
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.08.2013
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life‐history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life‐history and dispersal evolution during range shift. In roughly equal parts, life‐history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion.
Bibliography: 
ark:/67375/WNG-CSTC08HK-P
ArticleID:ELE12136
istex:B740F9D3F1EE569B2D6E1A4F5DF3771A9C35E5A0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1461-023X
1461-0248
DOI:10.1111/ele.12136