MicroRNA-139 inhibits hepatocellular carcinoma cell growth through down-regulating karyopherin alpha 2
MicroRNA-139-5p (miR-139) has been shown to play important roles in hepatocellular carcinoma (HCC) development. However, the exact mechanism of miR-139 in HCC remains largely unknown. We investigated the function in human cell lines and patient tissue samples by experimental techniques in molecular...
Saved in:
Published in | Journal of experimental & clinical cancer research Vol. 38; no. 1; pp. 182 - 15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
02.05.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | MicroRNA-139-5p (miR-139) has been shown to play important roles in hepatocellular carcinoma (HCC) development. However, the exact mechanism of miR-139 in HCC remains largely unknown.
We investigated the function in human cell lines and patient tissue samples by experimental techniques in molecular biology including Co-IP assay, cell viability assay, quantitative real-time-PCR, et al. In addition, datasets were used to verify the results by database analysis. Statistical analysis was performed by using the GraphPad Prism 6 (GraphPad Software Inc., USA). A P value < 0.05 was defined as statistically significant.
In this study, we found that miR-139 was significantly down-regulated in HCC. MiR-139 level was negatively associated with the stage of HCC, and HCC patients with higher miR-139 level had longer overall survival (OS) than these having lower miR-139 expression. Overexpression of miR-139 led to reduced cell viability, elevated apoptosis, and decreased colony forming, migratory and invasive capacities in HCC cells, while down-regulation of miR-139 led to opposite phenotypes. MiR-139 also inhibited HCC growth in a xenograft mouse model. We identified karyopherin alpha 2 (KPNA2) as a direct target of miR-139. KPNA2 is up-regulated in HCC and higher KPNA2 level is associated with poor patient prognosis. Silencing of KPNA2 expression led to similar phenotypic changes as miR-139 overexpression. Restoration of KPNA2 attenuated the suppressive effects of miR-139 overexpression on cell viability, apoptosis, colony formation, migration and invasion. In addition, miR-139 overexpression and KPNA2 depletion led to decreased nucleus level of POU class 5 homeobox 1 (POU5F1) and c-myc, two well-known pro-oncogenes.
In together, these data revealed the essential roles of the miR-139/KPNA2 axis in HCC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1756-9966 0392-9078 1756-9966 |
DOI: | 10.1186/s13046-019-1175-2 |