SETD3 is an actin histidine methyltransferase that prevents primary dystocia

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur . Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 565; no. 7739; pp. 372 - 376
Main Authors Wilkinson, Alex W, Diep, Jonathan, Dai, Shaobo, Liu, Shuo, Ooi, Yaw Shin, Song, Dan, Li, Tie-Mei, Horton, John R, Zhang, Xing, Liu, Chao, Trivedi, Darshan V, Ruppel, Katherine M, Vilches-Moure, José G, Casey, Kerriann M, Mak, Justin, Cowan, Tina, Elias, Joshua E, Nagamine, Claude M, Spudich, James A, Cheng, Xiaodong, Carette, Jan E, Gozani, Or
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur . Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Institutes of Health (NIH)
These authors contributed equally to the work
Author Contributions
A.W.W., J.D., S.D. contributed equally to this work. A.W.W. performed biochemical and molecular experiments and was responsible for the experimental design, execution, data analysis, and manuscript preparation. A.W.W. performed and analysed mass spectrometry experiments with help from and T.M.L. and J.E.E.. C.M.N. and J.D. performed mouse experiments with help from Y.S.O.. K.M.C. and J.G.V. performed histopathology. J.M. and T.C. analyzed plasma amino acids. S.D., J.R.H., X.Z. and X.C. performed kinetic experiments and determined X-ray structures. D.S., D.V.T., C.L., provided myosin and analyzed actin-myosin interactions, supervised by K.M.R. and J.A.S.. O.G. and J.E.C. and X.C. were equally responsible for supervision of research, data interpretation, and manuscript preparation.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-018-0821-8