Human secreted tau increases amyloid-beta production

The interaction of amyloid-beta (Aβ) and tau in the pathogenesis of Alzheimer's disease is a subject of intense inquiry, with the bulk of evidence indicating that changes in tau are downstream of Aβ. It has been shown however, that human tau overexpression in amyloid precursor protein transgeni...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 36; no. 2; pp. 693 - 709
Main Authors Bright, Jessica, Hussain, Sami, Dang, Vu, Wright, Sarah, Cooper, Bonnie, Byun, Tony, Ramos, Carla, Singh, Andrew, Parry, Graham, Stagliano, Nancy, Griswold-Prenner, Irene
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The interaction of amyloid-beta (Aβ) and tau in the pathogenesis of Alzheimer's disease is a subject of intense inquiry, with the bulk of evidence indicating that changes in tau are downstream of Aβ. It has been shown however, that human tau overexpression in amyloid precursor protein transgenic mice increases Aβ plaque deposition. Here, we confirm that human tau increases Aβ levels. To determine if the observed changes in Aβ levels were because of intracellular or extracellular secreted tau (eTau for extracellular tau), we affinity purified secreted tau from Alzheimer's disease patient–derived cortical neuron conditioned media and analyzed it by liquid chromatography-mass spectrometry. We found the extracellular species to be composed predominantly of a series of N-terminal fragments of tau, with no evidence of C-terminal tau fragments. We characterized a subset of high affinity tau antibodies, each capable of engaging and neutralizing eTau. We found that neutralizing eTau reduces Aβ levels in vitro in primary human cortical neurons where exogenously adding eTau increases Aβ levels. In vivo, neutralizing human tau in 2 human tau transgenic models also reduced Aβ levels. We show that the human tau insert sequence is sufficient to cause the observed increase in Aβ levels. Our data furthermore suggest that neuronal hyperactivity may be the mechanism by which this regulation occurs. We show that neuronal hyperactivity regulates both eTau secretion and Aβ production. Electrophysiological analysis shows for the first time that secreted eTau causes neuronal hyperactivity. Its induction of hyperactivity may be the mechanism by which eTau regulates Aβ production. Together with previous findings, these data posit a novel connection between tau and Aβ, suggesting a dynamic mechanism of positive feed forward regulation. Aβ drives the disease pathway through tau, with eTau further increasing Aβ levels, perpetuating a destructive cycle.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0197-4580
1558-1497
1558-1497
DOI:10.1016/j.neurobiolaging.2014.09.007