Identification and functional characterization of the AGO1 ortholog in maize

Eukaryotic Argonaute proteins play primary roles in mi RNA and si RNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four Zm AGO1 genes have not yet been characterized in maize(Zea mays L.). In the present study, Zm AGO1 a was id...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 58; no. 8; pp. 749 - 758
Main Authors Xu, Dongdong, Yang, Hailong, Zou, Cheng, Li, Wen-Xue, Xu, Yunbi, Xie, Chuanxiao
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Blackwell Publishing Ltd 01.08.2016
Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Eukaryotic Argonaute proteins play primary roles in mi RNA and si RNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four Zm AGO1 genes have not yet been characterized in maize(Zea mays L.). In the present study, Zm AGO1 a was identified from four putative Zm AGO1 genes for further characterization. Complementation of the Arabidopsis ago1-27 mutant with Zm AGO1 a indicated that constitutive overexpression of Zm AGO1 a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild-type phenotype. The expression profiles of Zm AGO1 a under five different abiotic stresses indicated that Zm AGO1 a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis, and wheat.Further, variation in Zm AGO1 a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that Zm AGO1 a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a.
AbstractList Eukaryotic Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four ZmAGO1 genes have not yet been characterized in maize ( Zea mays L.). In the present study, ZmAGO1a was identified from four putative ZmAGO1 genes for further characterization. Complementation of the Arabidopsis ago1‐27 mutant with ZmAGO1a indicated that constitutive overexpression of ZmAGO1a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild‐type phenotype. The expression profiles of ZmAGO1a under five different abiotic stresses indicated that ZmAGO1a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis , and wheat. Further, variation in ZmAGO1a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that ZmAGO1a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a .
Eukaryotic Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four ZmAGO1 genes have not yet been characterized in maize (Zea mays L.). In the present study, ZmAGO1a was identified from four putative ZmAGO1 genes for further characterization. Complementation of the Arabidopsis ago1-27 mutant with ZmAGO1a indicated that constitutive overexpression of ZmAGO1a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild-type phenotype. The expression profiles of ZmAGO1a under five different abiotic stresses indicated that ZmAGO1a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis, and wheat. Further, variation in ZmAGO1a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that ZmAGO1a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a.
Eukaryotic Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four ZmAGO1 genes have not yet been characterized in maize (Zea mays L.). In the present study, ZmAGO1a was identified from four putative ZmAGO1 genes for further characterization. Complementation of the Arabidopsis ago1‐27 mutant with ZmAGO1a indicated that constitutive overexpression of ZmAGO1a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild‐type phenotype. The expression profiles of ZmAGO1a under five different abiotic stresses indicated that ZmAGO1a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis, and wheat. Further, variation in ZmAGO1a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that ZmAGO1a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a. Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes in plants. The functional complementation study and expression profiling analysis demonstrated that ZmAGO1a was an important AGO1 ortholog in maize (Zea mays L.).
Eukaryotic Argonaute proteins play primary roles in mi RNA and si RNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four Zm AGO1 genes have not yet been characterized in maize(Zea mays L.). In the present study, Zm AGO1 a was identified from four putative Zm AGO1 genes for further characterization. Complementation of the Arabidopsis ago1-27 mutant with Zm AGO1 a indicated that constitutive overexpression of Zm AGO1 a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild-type phenotype. The expression profiles of Zm AGO1 a under five different abiotic stresses indicated that Zm AGO1 a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis, and wheat.Further, variation in Zm AGO1 a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that Zm AGO1 a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a.
Abstract Eukaryotic Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four ZmAGO1 genes have not yet been characterized in maize ( Zea mays L.). In the present study, ZmAGO1a was identified from four putative ZmAGO1 genes for further characterization. Complementation of the Arabidopsis ago1‐27 mutant with ZmAGO1a indicated that constitutive overexpression of ZmAGO1a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild‐type phenotype. The expression profiles of ZmAGO1a under five different abiotic stresses indicated that ZmAGO1a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis , and wheat. Further, variation in ZmAGO1a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that ZmAGO1a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a .
Author Dongdong Xu Hailong Yang Cheng Zou Wen-Xue Li Yunbi Xu Chuanxiao Xie
AuthorAffiliation Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
AuthorAffiliation_xml – name: Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China
– name: 1 Institute of Crop Science Chinese Academy of Agricultural Sciences Beijing 100081 China
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Xu
  fullname: Xu, Dongdong
  organization: Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
– sequence: 2
  givenname: Hailong
  surname: Yang
  fullname: Yang, Hailong
  organization: Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
– sequence: 3
  givenname: Cheng
  surname: Zou
  fullname: Zou, Cheng
  organization: Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
– sequence: 4
  givenname: Wen-Xue
  surname: Li
  fullname: Li, Wen-Xue
  organization: Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
– sequence: 5
  givenname: Yunbi
  surname: Xu
  fullname: Xu, Yunbi
  organization: Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
– sequence: 6
  givenname: Chuanxiao
  surname: Xie
  fullname: Xie, Chuanxiao
  email: xiechuanxiao@caas.cn
  organization: Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26848539$$D View this record in MEDLINE/PubMed
BookMark eNp9UVuLEzEYHWTFveiLP0AGQRBh1lwmycyLsC5rt1Lcgoq-hW_SpE2dJt1kZi_99aZOW_TFvCThXPKdnNPsyHmns-wlRuc4rfdLu27OMSm5eJKdYFGWhahRfZTOXJCiRoIcZ6cxLhGiFeLkWXZMeFVWjNYn2WQ8066zxirorHc5uFlueqe2F2hztYAAqtPBbgbcm7xb6PxidINzH7qFb_08ty5fgd3o59lTA23UL3b7Wfb909W3y-ticjMaX15MCsUZE4XhBrTRNZScEEUr1oDQhpGy1rg0WGHKQGNRc4wMMCip4fVMcUNZpXCpG3qWfRh8132z0jOVEgRo5TrYFYRH6cHKfxFnF3Lu7yRDAgvKksGbweAenAE3l0vfh5Q3ys39Q0MQ5qhCSCTe291Dwd_2OnZyZaPSbQtO-z5KXGHEGKN4a_luoKrgYwzaHMbBSG5rktua5J-aEvnV3wEO1H0viYB3A9pWP_7HSn4eTz_uTYtBY2OnHw4aCL9kQgWTP76M5Ncpqq5_Trnkif96N_HCu_mtTd-w13BeV0IQIuhvaZC6eg
CitedBy_id crossref_primary_10_3390_ijms231810586
crossref_primary_10_1111_nph_17699
crossref_primary_10_1007_s12298_023_01362_0
crossref_primary_10_1186_s41065_019_0102_z
crossref_primary_10_1016_j_cj_2018_02_005
crossref_primary_10_1186_s12864_019_6028_z
crossref_primary_10_1111_jipb_12596
crossref_primary_10_3390_plants8060170
crossref_primary_10_1038_s41598_021_87991_5
crossref_primary_10_1093_jxb_ery282
Cites_doi 10.1186/1471-2164-9-451
10.1371/journal.pgen.1000646
10.1016/j.cell.2006.09.033
10.1111/nph.12607
10.1371/journal.pone.0028009
10.1016/j.molcel.2013.10.033
10.1111/j.1365-313X.2005.02509.x
10.1016/j.tplants.2008.04.007
10.1038/nrg3462
10.1002/jcb.24133
10.1007/s00299-011-1046-6
10.1105/tpc.010358
10.1105/tpc.110.079020
10.1016/j.gene.2012.02.009
10.1038/nchembio848
10.1038/nrm2321
10.1105/tpc.112.099945
10.1016/j.cj.2013.07.002
10.1111/jipb.12205
10.1046/j.1365-313x.1998.00343.x
10.1186/1471-2164-8-116
10.1105/tpc.109.070938
10.1006/meth.2001.1262
10.1038/nature02874
10.1073/pnas.0505461102
10.1242/dev.126.3.469
10.1016/j.molcel.2006.03.011
10.1016/j.pbi.2006.01.013
ContentType Journal Article
Copyright 2016 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences
2016 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2016 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences
– notice: 2016 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
WU4
~WA
BSCLL
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
2B.
4A8
92I
93N
PSX
TCJ
5PM
DOI 10.1111/jipb.12467
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Istex
Wiley Online Library Open Access
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Identification and functional characterization of the AGO1 ortholog in maize
Functional complementation of ZmAGO1a
EISSN 1744-7909
EndPage 758
ExternalDocumentID zwxb201608007
10_1111_jipb_12467
26848539
JIPB12467
ark_67375_WNG_SP08HXP6_6
669877227
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
– fundername: This work was financially supported by the National Natural Science Foundation of China; the National High Technology Research and Development Program of China; The Agricultural Science and Technology Innovation Program of CAAS to CX
  funderid: (31361140364 & 31171562); (2012AA10A306); (ASTIP) of CAAS to CX
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
2RA
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92L
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCEZO
CCVFK
CHBEP
CHDYS
COF
CQIGP
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESTFP
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
UB1
W8V
W94
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WU4
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WA
~WT
ABPTK
BSCLL
-SA
-S~
24P
5XA
5XB
AAHBH
AAXDM
AITYG
CAJEA
HGLYW
OIG
Q--
U1G
U5K
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
4A8
PSX
5PM
ID FETCH-LOGICAL-c6557-f6faefe9a4622c385ba7ef5249e14f1c135ae179610fa5a43f69dc6f358c14eb3
IEDL.DBID DR2
ISSN 1672-9072
IngestDate Tue Sep 17 21:16:59 EDT 2024
Tue Feb 13 23:40:37 EST 2024
Fri Aug 16 21:06:37 EDT 2024
Fri Aug 23 00:57:14 EDT 2024
Sat Sep 28 08:27:45 EDT 2024
Sat Aug 24 01:00:20 EDT 2024
Wed Jan 17 04:59:35 EST 2024
Wed Feb 14 10:16:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords ZmAGO1a
functional complementation
maize
AGO1
Language English
License Attribution
2016 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6557-f6faefe9a4622c385ba7ef5249e14f1c135ae179610fa5a43f69dc6f358c14eb3
Notes 11-5067/Q
Eukaryotic Argonaute proteins play primary roles in mi RNA and si RNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four Zm AGO1 genes have not yet been characterized in maize(Zea mays L.). In the present study, Zm AGO1 a was identified from four putative Zm AGO1 genes for further characterization. Complementation of the Arabidopsis ago1-27 mutant with Zm AGO1 a indicated that constitutive overexpression of Zm AGO1 a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild-type phenotype. The expression profiles of Zm AGO1 a under five different abiotic stresses indicated that Zm AGO1 a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis, and wheat.Further, variation in Zm AGO1 a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that Zm AGO1 a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a.
AGO1 functional complementation maize ZmAGO1a
National Natural Science Foundation of China
ArticleID:JIPB12467
istex:AE475816549F96BA7851CF8043B0BB68BF4C16F4
ark:/67375/WNG-SP08HXP6-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Available online on Feb. 5, 2016 at www.wileyonlinelibrary.com/journal/jipb
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12467
PMID 26848539
PQID 1810555315
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5071735
wanfang_journals_zwxb201608007
proquest_miscellaneous_1810555315
crossref_primary_10_1111_jipb_12467
pubmed_primary_26848539
wiley_primary_10_1111_jipb_12467_JIPB12467
istex_primary_ark_67375_WNG_SP08HXP6_6
chongqing_primary_669877227
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate Journal of Integrative Plant Biology
PublicationTitle_FL Journal of Integrative Plant Biology
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China
– name: John Wiley and Sons Inc
References Wei KF, Wu LJ, Chen J, Chen YF, Xie DX ( 2012) Structural evolution and functional diversification analyses of argonaute protein. J Cell Biochem 113: 2576-2585
Clough SJ, Bent AF ( 1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
Settles AM, Holding D, Tan B, Latshaw S, Liu J, Suzuki M, Li L, O'Brien B, Fajardo D, Wroclawska E, Tseung CW, Lai J, Hunter C, Avigne W, Baier J, Messing J, Hannah LC, Koch K, Becraft P, Larkins B, McCarty D ( 2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8: 116
Baumberger N, Baulcombe DC ( 2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102: 11928-11933
Baulcombe D ( 2004) RNA silencing in plants. Nature 431: 356-363
Iwakawa HO, Tomari Y ( 2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52: 591-601
Livak KJ, Schmittgen TD ( 2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25: 402-408
Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK ( 1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126: 469-481
Tolia NH, Joshua-Tor L ( 2007) Slicer and the Argonautes. Nat Chem Biol 3: 36-43
Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC ( 2006) Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127: 747-757
Hutvagner G, Simard MJ ( 2008) Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol 9: 22-32
McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC ( 2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44: 52-61
Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y ( 2009) Rice microRNA effector complexes and targets. Plant Cell 21: 3421-3435
Vaucheret H ( 2008) Plant ARGONAUTES. Trends Plant Sci 13: 350-358
Buckler ES, Gaut BS, McMullen MD ( 2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9: 172-176
Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B ( 2011) Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30: 1347-1363
Mallory AC, Hinze A, Tucker MR, Bouche N, Gasciolli V, Elmayan T, Lauressergues D, Jauvion V, Vaucheret H, Laux T ( 2009) Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet 5: e1000646
Vaucheret H, Mallory AC, Bartel DP ( 2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22: 129-136
Xie C, Weng J, Liu W, Zou C, Hao Z, Li W, Li M, Guo X, Zhang G, Xu Y, Li X, Zhang S ( 2013) Zea mays (L.) P1 locus for cob glume color identified as a post-domestication selection target with an effect on temperate maize genomes. Crop J 1: 15-24
Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C ( 2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE 6: e28009
Bai M, Yang GS, Chen WT, Mao ZC, Kang HX, Chen GH, Yang YH, Xie BY ( 2012) Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 501: 52-62
Morel JB, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H ( 2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14: 629-639
Zhai L, Sun W, Zhang K, Jia H, Liu L, Liu Z, Teng F, Zhang Z ( 2014) Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize. J Integr Plant Biol 56: 1042-1052
Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S ( 2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9: 451
Liu WW, Tai HH, Li SS, Gao W, Zhao M, Xie CX, Li WX ( 2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201: 1192-1204
Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D ( 2011) Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23: 443-458
Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC ( 2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24: 3613-3629
Meister G ( 2013) Argonaute proteins: Functional insights and emerging roles. Nat Rev Genet 14: 447-459
2002; 14
2009; 21
2013; 1
2006; 9
2008; 9
2011; 30
2008; 13
2012; 501
1999; 126
2011; 6
2001; 25
2005; 44
2004; 431
1998; 16
2013; 14
2012; 113
2005; 102
2006; 22
2013; 52
2007; 8
2011; 23
2009; 5
2007; 3
2006; 127
2012; 24
2014; 56
2014; 201
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 21
  start-page: 3421
  year: 2009
  end-page: 3435
  article-title: Rice microRNA effector complexes and targets
  publication-title: Plant Cell
– volume: 14
  start-page: 629
  year: 2002
  end-page: 639
  article-title: Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post‐transcriptional gene silencing and virus resistance
  publication-title: Plant Cell
– volume: 501
  start-page: 52
  year: 2012
  end-page: 62
  article-title: Genome‐wide identification of Dicer‐like, Argonaute and RNA‐dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in
  publication-title: Gene
– volume: 52
  start-page: 591
  year: 2013
  end-page: 601
  article-title: Molecular insights into microRNA‐mediated translational repression in plants
  publication-title: Mol Cell
– volume: 113
  start-page: 2576
  year: 2012
  end-page: 2585
  article-title: Structural evolution and functional diversification analyses of argonaute protein
  publication-title: J Cell Biochem
– volume: 127
  start-page: 747
  year: 2006
  end-page: 757
  article-title: Analysis of the Argonaute family reveals that distinct Argonautes act sequentially during RNAi
  publication-title: Cell
– volume: 23
  start-page: 443
  year: 2011
  end-page: 458
  article-title: Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein
  publication-title: Plant Cell
– volume: 13
  start-page: 350
  year: 2008
  end-page: 358
  article-title: Plant ARGONAUTES
  publication-title: Trends Plant Sci
– volume: 5
  start-page: e1000646
  year: 2009
  article-title: Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA‐directed gene silencing
  publication-title: PLoS Genet
– volume: 6
  start-page: e28009
  year: 2011
  article-title: Genome‐wide identification of microRNAs in response to low nitrate availability in maize leaves and roots
  publication-title: PLoS ONE
– volume: 9
  start-page: 22
  year: 2008
  end-page: 32
  article-title: Argonaute proteins: Key players in RNA silencing
  publication-title: Nat Rev Mol Cell Biol
– volume: 44
  start-page: 52
  year: 2005
  end-page: 61
  article-title: Steady‐state transposon mutagenesis in inbred maize
  publication-title: Plant J
– volume: 14
  start-page: 447
  year: 2013
  end-page: 459
  article-title: Argonaute proteins: Functional insights and emerging roles
  publication-title: Nat Rev Genet
– volume: 9
  start-page: 172
  year: 2006
  end-page: 176
  article-title: Molecular and functional diversity of maize
  publication-title: Curr Opin Plant Biol
– volume: 30
  start-page: 1347
  year: 2011
  end-page: 1363
  article-title: Identification and characterization of Dicer‐like, Argonaute and RNA‐dependent RNA polymerase gene families in maize
  publication-title: Plant Cell Rep
– volume: 431
  start-page: 356
  year: 2004
  end-page: 363
  article-title: RNA silencing in plants
  publication-title: Nature
– volume: 24
  start-page: 3613
  year: 2012
  end-page: 3629
  article-title: Functional analysis of three ARGONAUTES using slicer‐defective mutants
  publication-title: Plant Cell
– volume: 102
  start-page: 11928
  year: 2005
  end-page: 11933
  article-title: ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: 451
  year: 2008
  article-title: Genome‐wide identification, organization and phylogenetic analysis of Dicer‐like, Argonaute and RNA‐dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice
  publication-title: BMC Genomics
– volume: 8
  start-page: 116
  year: 2007
  article-title: Sequence‐indexed mutations in maize using the UniformMu transposon‐tagging population
  publication-title: BMC Genomics
– volume: 22
  start-page: 129
  year: 2006
  end-page: 136
  article-title: AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1
  publication-title: Mol Cell
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: A simplified method for ‐mediated transformation of Arabidopsis thaliana
  publication-title: Plant J
– volume: 1
  start-page: 15
  year: 2013
  end-page: 24
  article-title: (L.) P1 locus for cob glume color identified as a post‐domestication selection target with an effect on temperate maize genomes
  publication-title: Crop J
– volume: 201
  start-page: 1192
  year: 2014
  end-page: 1204
  article-title: bHLH122 is important for drought and osmotic stress resistance in and in the repression of ABA catabolism
  publication-title: New Phytol
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(T)(‐Delta Delta C) method
  publication-title: Methods
– volume: 3
  start-page: 36
  year: 2007
  end-page: 43
  article-title: Slicer and the Argonautes
  publication-title: Nat Chem Biol
– volume: 126
  start-page: 469
  year: 1999
  end-page: 481
  article-title: The PINHEAD/ZWILLE gene acts pleiotropically in development and has overlapping functions with the ARGONAUTE1 gene
  publication-title: Development
– volume: 56
  start-page: 1042
  year: 2014
  end-page: 1052
  article-title: Identification and characterization of Argonaute gene family and meiosis‐enriched Argonaute during sporogenesis in maize
  publication-title: J Integr Plant Biol
– ident: e_1_2_10_10_1
  doi: 10.1186/1471-2164-9-451
– ident: e_1_2_10_14_1
  doi: 10.1371/journal.pgen.1000646
– ident: e_1_2_10_28_1
  doi: 10.1016/j.cell.2006.09.033
– ident: e_1_2_10_11_1
  doi: 10.1111/nph.12607
– ident: e_1_2_10_27_1
  doi: 10.1371/journal.pone.0028009
– ident: e_1_2_10_9_1
  doi: 10.1016/j.molcel.2013.10.033
– ident: e_1_2_10_15_1
  doi: 10.1111/j.1365-313X.2005.02509.x
– ident: e_1_2_10_22_1
  doi: 10.1016/j.tplants.2008.04.007
– ident: e_1_2_10_16_1
  doi: 10.1038/nrg3462
– ident: e_1_2_10_24_1
  doi: 10.1002/jcb.24133
– ident: e_1_2_10_18_1
  doi: 10.1007/s00299-011-1046-6
– ident: e_1_2_10_17_1
  doi: 10.1105/tpc.010358
– ident: e_1_2_10_20_1
  doi: 10.1105/tpc.110.079020
– ident: e_1_2_10_2_1
  doi: 10.1016/j.gene.2012.02.009
– ident: e_1_2_10_21_1
  doi: 10.1038/nchembio848
– ident: e_1_2_10_8_1
  doi: 10.1038/nrm2321
– ident: e_1_2_10_6_1
  doi: 10.1105/tpc.112.099945
– ident: e_1_2_10_26_1
  doi: 10.1016/j.cj.2013.07.002
– ident: e_1_2_10_29_1
  doi: 10.1111/jipb.12205
– ident: e_1_2_10_7_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_10_19_1
  doi: 10.1186/1471-2164-8-116
– ident: e_1_2_10_25_1
  doi: 10.1105/tpc.109.070938
– ident: e_1_2_10_12_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_10_3_1
  doi: 10.1038/nature02874
– ident: e_1_2_10_4_1
  doi: 10.1073/pnas.0505461102
– ident: e_1_2_10_13_1
  doi: 10.1242/dev.126.3.469
– ident: e_1_2_10_23_1
  doi: 10.1016/j.molcel.2006.03.011
– ident: e_1_2_10_5_1
  doi: 10.1016/j.pbi.2006.01.013
SSID ssj0038062
Score 2.236178
Snippet Eukaryotic Argonaute proteins play primary roles in mi RNA and si RNA pathways that are essential for numerous developmental and biological processes. However,...
Eukaryotic Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes. However,...
Abstract Eukaryotic Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes....
SourceID pubmedcentral
wanfang
proquest
crossref
pubmed
wiley
istex
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 749
SubjectTerms AGO1
Amino Acid Motifs
Arabidopsis - genetics
Base Sequence
Conserved Sequence
functional complementation
Gene Expression Profiling
Gene Expression Regulation, Plant
Genes, Plant
Genetic Complementation Test
Genetic Variation
maize
Mutation - genetics
Phylogeny
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
Sequence Homology, Amino Acid
Stress, Physiological - genetics
Transformation, Genetic
Zea mays - genetics
Zea mays - metabolism
ZmAGO1a
Title Identification and functional characterization of the AGO1 ortholog in maize
URI http://lib.cqvip.com/qk/94176A/201608/669877227.html
https://api.istex.fr/ark:/67375/WNG-SP08HXP6-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12467
https://www.ncbi.nlm.nih.gov/pubmed/26848539
https://search.proquest.com/docview/1810555315
https://d.wanfangdata.com.cn/periodical/zwxb201608007
https://pubmed.ncbi.nlm.nih.gov/PMC5071735
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NDSRe-P4Ig8oIxANSqnz4I5F4aYGuTGhUwERfJstObFZNJGNttdG_nrOTRisgJHiLZMeRfXe-39l3vwA8twlqbhIVIS2tu2ZkLMx4aUJuhdAi0hgVebbPAz4-pPtTNt2CV-tamIYfojtwc5bh92tn4ErPLxv57FT30TtxV0rumPQcIvrYcUelWeT_JhpzkYQYASYtN6lP4-ledYwKx3X19Tv6iQ3PtOMW-eJPsPP37Mlr56qyyg1wGd96BzW6CUfrqTV5KSf95UL3i9UvrI__O_dbcKNFrmTQqNpt2DLVHbg6rBFd_rgL75uKX9seARJVlcT5zOaokRQdL3RT9klqSxB6ksHeh5i4qyO3B5NZRb6p2crcg8PR28-vx2H7p4aw4IyJ0HKrjDW5ojxJijRjWgljGYZ2JqY2LuKUKYOmj1jNKqZoanleFtymLCtiivH8fdiu6so8BBJlNNUiLQtHxJ9pnScx1RZduaAMoZwKYLeTmDxtGDkk53mGYUIiAni2lmHX2IU5uGjSL1oAL7x4uy7q7MQluAkmvxzsyU-TKBtPJ1zyAJ6u5S_R7NxdiqpMvZxLBEaOKi2NWQAPGn3oRnMEOoiC8gDEhqZ0HRyl92ZLNTv21N7MZ0XgmL1Wp2S7pczl6vxCJ44PECE-zuCl14-_TFLuv5sM_dOjf-m8C9fdV5ocx8ewvThbmieIuxa6B1cSOunBzmD4ZjjqeWv7CemCKm8
link.rule.ids 230,315,786,790,891,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgA8EL34wwGEYgHpBS5ct28rgBWzdKqWDT-mbZib1VE8lYW230r-fOyawVEBK8RJHsOLJ95_vd-fwzIa9tApKbRGWYVRa3GRkLc16ZkFshtIg0eEWO7XPI-wfZ3piNu9wcPAvT8kP4gBtqhluvUcExIH1VyyenugfmiYvrZBWeDPXy_RfPHpXmkbtPNOYiCcEHTDp2UpfI479FToXjpj76DpZiyTat4jBf_Al4_p4_efNc1VZhA1cRrjNR23fbe1injtkQM1NOevOZ7pWLX3gf_7v398idDrzSzVba7pNrpn5Abmw1ADB_PCSD9tCv7aKAVNUVRbPZRhtp6amh25OftLEU0Cfd3PkcU9w9wmWYTmr6TU0W5hE52P6w_64fdpc1hCVnTISWW2WsKVTGk6RMc6aVMJaBd2fizMZlnDJlQPsBrlnFVJZaXlQltynLyzgDl_4xWamb2jwhNMqzVIu0KpGLP9e6SOJMW7DmImOA5lRA1v2UydOWlENyXuTgKSQiIK8uJ9EXek8HBk26QQvIGze_voo6O8EcN8Hk4XBHfh1FeX884pIH5OWlAEjQPNxOUbVp5lMJ2AjZ0tKYBWStFQjfGnLoABAqAiKWRMVXQFbv5ZJ6cuzYvZlLjIA2Nzqhkt2qMpWL8wudICUgoHzowVsnIH_ppNzbHW25t6f_UvkFudXf_zSQg93hx3VyG__Ypjw-Iyuzs7l5DjBspjecsv0EGNUsRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VFhAXxLuhUIxAHJBSJY4ficSlBbbbUi2RoGJvlp3YdFWRLH2opb-esZONugIhcYvkR-QZj-cbe_wZ4LWjOHNpUsWsdv6YkfM4F7WNhZPSyMRgVBTYPidifMj2p3y6Au8Wd2E6fohhw81bRlivvYHPa3fdyGdzs4XeScgbsMYEQgfP68zKxTqc5Ul4TjQVksYYAtKenDTk8QxtPaXCUdt8_4mOYsk1rXkpX_4Nd_6ZPnnrQjdO-w6uA9zgoUb34G4PLcl2Nxfuw4ptHsDNnRbh36-HcNBdyXX9Hh3RTU28U-v2Akk1EDd39zJJ6whiQ7K9-zkl_mzHL5Jk1pAfenZlH8Hh6OPX9-O4f0ohrgTnMnbCaetsoZmgtMpybrS0jmPsZVPm0irNuLZomwimnOaaZU4UdSVcxvMqZRhwP4bVpm3sOpAkZ5mRWV15pvzcmIKmzDj0tZJxxFo6go1BomreUWYoIYoccTyVEbxayHgoHOIQ1IoKWongTRD_UEWfHPsMNMnVt8mu-lIm-XhaCiUieLnQj0K78IcdurHt-alC5OK5zLKUR_Ck09fQm2e4QZhSRCCXNDlU8JzbyyXN7Chwb_OQtoB9bvY6V73Nn6qri0tDPWEfYnAcwdswFf4xSLW_V-6Er6f_U_kF3C4_jNTB3uTTBtzxP-zyEZ_B6tnJuX2OGOnMbAZT-A26eApQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+functional+characterization+of+the+AGO1+ortholog+in+maize&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Xu%2C+Dongdong&rft.au=Yang%2C+Hailong&rft.au=Zou%2C+Cheng&rft.au=Li%2C+Wen-Xue&rft.date=2016-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=58&rft.issue=8&rft.spage=749&rft.epage=758&rft_id=info:doi/10.1111%2Fjipb.12467&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_SP08HXP6_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94176A%2F94176A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg