Production of a Health-Beneficial Food Emulsifier by Enzymatic Partial Hydrolysis of Phospholipids Obtained from the Head of Autumn Chum Salmon

Phospholipids and their partial hydrolysates, namely lysophospholipids (LPLs), have been widely used in food, pharmaceutical, and cosmetic products as highly efficient emulsifiers. This study was conducted to produce docosahexaenoic acid (DHA)-esterified LPLs by enzymatic modification of phospholipi...

Full description

Saved in:
Bibliographic Details
Published inJournal of Oleo Science Vol. 66; no. 2; pp. 147 - 155
Main Authors A. K. M. Azad Shah, Nagao, Toshihiro, Kurihara, Hideyuki, Takahashi, Koretaro
Format Journal Article
LanguageEnglish
Published Japan Japan Oil Chemists' Society 01.02.2017
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phospholipids and their partial hydrolysates, namely lysophospholipids (LPLs), have been widely used in food, pharmaceutical, and cosmetic products as highly efficient emulsifiers. This study was conducted to produce docosahexaenoic acid (DHA)-esterified LPLs by enzymatic modification of phospholipids obtained from the head of autumn chum salmon (Oncorhynchus keta). The emulsifying properties of the obtained LPLs were also evaluated. Two different types of substrates of salmon head phospholipids were prepared via silica gel and cold acetone precipitation. Enzymatic partial hydrolysis was carried out using immobilized phospholipase A1 (PLA1) and Lipozyme RM IM. Results showed that the increase in DHA in the LPLs was much higher in the silica-separated phospholipids than in the acetone-precipitated phospholipids. When silica-separated phospholipids were used as the substrate, the DHA content of the LPLs increased from 23.1% to 40.6% and 42.6% after 8 h of partial hydrolysis with Lipozyme RM IM and immobilized PLA1, respectively. The yield of the LPLs was comparatively higher in the Lipozyme RM IM than in the immobilized PLA1 hydrolysis reaction. The critical micelle concentration values of the LPLs and purified lysophosphatidylcholine (LPC) were 100 mg/L and 5 mg/L, respectively. The surface tension values of the LPLs and LPC were reduced to 30.0 mN/m and 30.5 mN/m, respectively. The hydrophilic-lipophilic balance of the LPLs and LPC were 6.0 and 9.4, respectively. Based on the emulsifying properties observed, we conclude that LPLs derived from the phospholipids of salmon head lipids could be used as a health-beneficial emulsifier in the food industry.
ISSN:1345-8957
1347-3352
DOI:10.5650/jos.ess16171