Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus
The global population at risk from mosquito-borne diseases—including dengue, yellow fever, chikungunya and Zika—is expanding in concert with changes in the distribution of two key vectors: Aedes aegypti and Aedes albopictus . The distribution of these species is largely driven by both human movement...
Saved in:
Published in | Nature microbiology Vol. 4; no. 5; pp. 854 - 863 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The global population at risk from mosquito-borne diseases—including dengue, yellow fever, chikungunya and Zika—is expanding in concert with changes in the distribution of two key vectors:
Aedes aegypti
and
Aedes albopictus
. The distribution of these species is largely driven by both human movement and the presence of suitable climate. Using statistical mapping techniques, we show that human movement patterns explain the spread of both species in Europe and the United States following their introduction. We find that the spread of
Ae. aegypti
is characterized by long distance importations, while
Ae. albopictus
has expanded more along the fringes of its distribution. We describe these processes and predict the future distributions of both species in response to accelerating urbanization, connectivity and climate change. Global surveillance and control efforts that aim to mitigate the spread of chikungunya, dengue, yellow fever and Zika viruses must consider the so far unabated spread of these mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes and thereby augment efforts to reduce arbovirus burden in human populations globally.
Statistical mapping techniques provide insights into the spread of two key arbovirus vectors in Europe and the United States, and predict the future distributions of both mosquitoes in response to accelerating urbanization, connectivity and climate change. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2058-5276 2058-5276 |
DOI: | 10.1038/s41564-019-0376-y |